
by
Kevin Fiedler

Iterative
Implementation of
a Content Editor
for Museum
Guides

Bachelor’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Ulrik Schroeder

Registration date: 09.09.2021
Submission date: 07.10.2021

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________
Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)

Matriculation No. (optional)
Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)
erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.
Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,
dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written
and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________
Ort, Datum/City, Date Unterschrift/Signature
 *Nichtzutreffendes bitte streichen

*Please delete as appropriate
Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.
Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely
testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.
Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence
(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________
Ort, Datum/City, Date Unterschrift/Signature

v

Contents

Abstract xi

Überblick xiii

Acknowledgements xv

Conventions xvii

1 Introduction 1

2 Related Work 5

2.1 WYSIWYG Content Editors 5

2.2 Museum Guides 6

2.3 Centre App . 7

3 Initial Considerations 11

3.1 Stakeholders 11

3.2 Centre App Data Structure 12

3.3 Current Workflows and Limitations 14

vi Contents

3.4 List of Requirements 15

3.5 Platform and Code Design Decisions 16

3.5.1 Content Editor 16

3.5.2 Website 18

4 Iterative User Interface Design 19

4.1 Paper Prototypes 19

4.2 Software Prototypes 24

4.2.1 Exhibition Setup Assistant 25

4.2.2 WYSIWYG Style Editing 26

4.2.3 Multi-language Support 29

4.2.4 Audio Player and Keyframes 30

4.2.5 Error Handling 32

4.3 Feature Complete Software Prototype 35

5 User Study 41

5.1 Design and Execution 41

5.2 Task 1: Creating Exhibitions 42

5.3 Task 2: Editing Style 43

5.4 Task 3: Editing Exhibits 45

5.5 Task 4: Audio Player Interactions 48

5.6 Task 5: New Exhibits and Children 49

5.7 Conclusions 51

Contents vii

6 Final Product and Conclusions 53

6.1 Finishing Touches 53

6.2 Real-World Application and New Features . 54

6.3 Conclusions 55

7 Summary and Future Work 57

7.1 Summary and Contributions 57

7.2 Future Work 58

A Full List of Requirements 61

B Quantifiable User Study Results 63

Bibliography 65

Index 69

ix

List of Figures

2.1 Map of the Centre app 8

2.2 Information content in the Centre app 9

3.1 Centre app data structure 13

4.1 First paper prototype 20

4.2 Second paper prototype 21

4.3 Three-pane digital mock-up 22

4.4 Two window digital mock-up 23

4.5 Exhibition setup assistant 25

4.6 NSColorPicker and NSFontPanel 27

4.7 Style user interface 28

4.8 Multi-language column design 30

4.9 Audio player concepts 31

4.10 Keyframe popover 32

4.11 Audio player info alert 33

4.12 Error indicators in the sidebar 34

x List of Figures

4.13 Concepts for highlighting erroneous values
in the exhibit editor 35

4.14 Website . 36

4.15 QuickEdit popover 37

4.16 Map & Style workspace 39

4.17 Exhibit and Metadata workspace 40

5.1 Floating map footer 44

5.2 Different appearance dialog 45

5.3 Chart of different workspace interactions . . 46

5.4 Separate map thumbnail row 47

5.5 Chart of different keyframe interactions . . . 48

5.6 Multiple exhibit selection 51

xi

Abstract

Many museums offer a mobile app to its visitors these days. These apps are de-
signed to guide the visitors through the museum, list available exhibits, and pro-
vide additional information through the app. The benefits for the visitors are man-
ifold. However, workflows for creating and preparing content for museum guides
are time-consuming and prone to errors. A content editor can speed up and sim-
plify said workflows.

In this thesis, we use an iterative design process to develop and implement a con-
tent editor for museum guides. The content editor provides an easy to use interface,
automates certain tasks, and shows a live preview of how the content will look like
in the mobile app. We evaluate the content editor using usability heuristics and
conduct a user study to learn about expected user interactions and to discover us-
ability issues.

xii Abstract

xiii

Überblick

Viele Museen bieten ihren Besuchern heutzutage eine Smartphone-App an. Diese
Apps bieten eine Reihe an Funktionen: Sie leiten Besucher durch das Museum,
zeigen Exponate an und liefern zusätzliche Informationen. Allerdings ist das Er-
stellen und Aufbereiten von Inhalten für die Museum-Apps zeitaufwändig und
fehleranfällig. Ein Content-Editor kann dabei helfen diese Arbeiten zu beschleuni-
gen und zu vereinfachen.

In dieser Arbeit entwickeln und implementieren wir einen Content-Editor für
Museum-Apps. Dafür nutzen wir einen iterativen Design Prozess. Der Content-
Editor bietet nicht nur eine einfach zu bedienende Benutzeroberfläche, sondern
automatisiert auch bestimme Arbeitsabläufe und zeigt eine live Vorschau der In-
halte an, wie diese auf den Smartphone-Apps aussehen werden. Wir evaluieren
den Content-Editor mittels heuristischer Evaluation. In einer Studie lernen wir
mehr über die Erwartungen der Nutzer bezüglich eines Museum-Content-Editors
und verbessern die Benutzerfreundlichkeit.

xv

Acknowledgements

Firstly, I want to thank my supervisors, Sebastian Hueber and Oliver Nowak, for
all their time and advice during my work on this thesis.

I want to thank Prof. Dr. Jan Borchers and Prof. Dr. Ulrik Schroeder for examining
this thesis.

I thank my family and friends for all their support.

Thank you to everyone who participated in the user study. You provided me with
invaluable feedback.

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:

Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English. We use
the plural form for the first person. For unidentified third
persons we use the pronoun they/their.

1

Chapter 1

Introduction

In recent years museums have greatly modernized the
museum-going experience [Bae et al., 2013]. With the rising
popularity of the smartphone, many museums now offer
an app for their visitors to guide them through their exhibi-
tions and provide visitors with additional information and
multimedia content through the app.

During our studies we had a look at a wide variety of mu- Many museum apps

offer a lot of similar

features.

seum apps across multiple countries1. We found that all of
them offer the same basic features such as a map of the mu-
seum with the location of the exhibits shown. When the vis-
itor selects an exhibit additional information is presented.
Some museum apps use text and images, others audio or
video files, or a combination of them. Those information is
often provided in multiple languages to accommodate vis-
itors from all around the world.

Some apps provide more custom features: locating the vis- Museum content can

be quite complex.itor within the museum2, augmented reality content (AR)3

or virtual reality content (VR)4, or even a quiz section to

1Among others: Germany, the United States, the United Kingdom,
Italy, Russia, and China

2https://apps.apple.com/us/app/flapp-future-lab-aachen-
app/id1145415788

3https://apps.apple.com/us/app/artlens/id580839935
4https://apps.apple.com/us/app/ksc-360-

expedition/id1129685069

2 1 Introduction

check if the visitor paid close attention5. Hence, museum
content follows a certain, basic structure, but individual
features vary based on the individual apps. As Al Takrouri
et al. [2008] points out, museum content can also easily get
quite complex.

Although many museums already have their informationMuseum content

needs to be edited

manually.

content digitally available [Santoro et al., 2007], this con-
tent may not be in the appropriate format to be used by
the mobile app directly. For example, museum apps re-
quire the data to be in the same format (e.g., JSON, XML,
or SQLite) and images to have a maximum resolution in or-
der to speed up download times. This means that existing
museum content needs to be edited and formatted in order
to work with the app. This can require tasks such as for-
matting files, resizing images, or renaming files based on
certain naming conventions expected by the mobile app.

This work alone is rather time-consuming and doesn’t yetManually editing

museum content is

time-consuming and

prone to errors.

take into account the possibility of human error. Working
with complex data increases cognitive load [Chandler and
Sweller, 1991] which can lead to decreased performance
and a higher potential for errors: A mislabeled file or a sim-
ple syntax error can render the content unreadable by the
app. Furthermore, this work is not necessarily a one-time
occurrence. Museums with temporary exhibitions have to
repeat this process regularly.

One solution to these problems is the use of a content ed-A content editor can

speed up and

simplify content

creation.

itor which supports the user in their workflow. A content
editor can not only reduce the required time by automat-
ing certain actions formerly done manually, but it can also
reduce the cognitive load by providing an easy to use inter-
face and therefore reduce the amount of errors. However,
with the complexity of museum data and the amount of
customization required, there is no out of the box software
solution.

In this thesis, we develop a “What You See is What YouWe develop a

content editor based

on the Centre app.

Get” (WYSIWYG) museum content editor for the “Centre
Charlemagne Museum”6, a museum in the city of Aachen,

5https://apps.apple.com/us/app/explorer-amnh-nyc/id381227123
6http://www.centre-charlemagne.eu

3

Germany. The Centre Charlemagne Museum offers a mo-
bile app for iOS and Android called “Centre Charlemagne –
Guide” (hereinafter called Centre app) that guides the user
through its exhibitions. The Centre app offers a lot of the
features mentioned before: A map with exhibits on it and
in-depth information for each exhibit in both text form and
as an audio guide. Furthermore, the information is pro-
vided in multiple languages. The permanent exhibition,
for instance, is available in German, English, French, and
Dutch.

In Chapter 2 “Related Work”, we have a look at related lit-
erature. This includes research into content editors and mu-
seum guides. We will also have a detailed look at the Centre
app that the content editor is going to be based on.

In chapters 3 to 6 we describe the development process of
the content editor. We start by outlining the project, the re-
quirements and initial planing in Chapter 3 “Initial Consid-
erations”. In the next chapter, “Iterative User Interface De-
sign”, we describe the iterative design process of the user
interface up to a first feature complete software prototype.
We then evaluate this software in Chapter 5 “User Study”
and adjust the software based on our findings. In Chapter
6 “Final Product and Conclusions” we introduce the final
version of the software and its first use in real-world condi-
tions and present our conclusions of the design process.

In Chapter 7 “Summary and Future Work”, we conclude
our research and give an outlook of how the content editor
can be expanded in the future.

5

Chapter 2

Related Work

In this chapter, we discuss research that is related to our
work. In Chapter 2.1, we look into research regarding
WYSIWYG content editors and their advantages and dis-
advantages. We then discuss research into museum guides
in general in Chapter 2.2, before we look specifically at the
Centre app that our content editor is based on in Chapter
2.3.

2.1 WYSIWYG Content Editors

Research into WYSIWYG editors dates back decades and WYSIWYG

originates from word

processing software.

originates from word processing software [Chamberlin,
1987]. In fact, the first WYSIWYG word processing soft-
ware, Bravo, was released in 1974. In the 1990s, re-
search into WYSIWYG also shifted towards web design
with WYSIWYG editors for HTML and CSS.

Williams and Wilkinson [1994] developed an WYSIWYG A WYSIWYG editor

guarantees correct

output.

HTML editor and name two benefits over manually edit-
ing the document: It is easier to use and guarantees a cor-
rect output of HTML documents. However, as Spiesser and
Kitchen [2004] point out, the output of WYSIWYG HTML
editors can be quite large and contain a lot of unnecessary
or repetitive code.

6 2 Related Work

Chester and Sánchez-Ruı́z tested a web based WYSIWYGA WYSIWYG editor

reduces

maintenance and

development time.

CSS editor with participants who had experience in HTML
and CSS. 83.3% stated that using the WYSIWYG editor of-
fers an advantage over manual editing. They concluded
that using WYSIWYG can be beneficial for experimentation
and creativity, and that it reduces maintenance and devel-
opment time.

Wolber et al. [2002] applied the WYSIWYG approach toWYSIWYG lowers

the required

knowledge.

dynamic web pages and database access. Using the
WYSIWYG interface doesn’t require SQL knowledge or any
programming of the user. They, too, concluded that using
the WYSIWYG system reduces development time and also
allows non-programmers to create dynamic web pages.

Similarly, Yang et al. [2008] used WYSIWYG to simplify the
development of web applications with a database based on
Social Networking APIs; thus allowing users without pro-
gramming or database knowledge to develop applications
in a graphical user interface. The application generates
the database schema automatically and gives users instant
feedback on what they have created.

The previous examples of WYSIWYG software were tar-WYSIWYG is also

successfully used in

specialized areas to

accommodate

novices and experts

alike.

geted at a broad audience of users. Word processing soft-
ware such as Microsoft Word or Pages is probably used by
everyone at some point. However, WYSIWYG software can
also be used to great success in more niche situations. Jenny
et al. [2010] used a WYSIWYG interface for geospatial data
collections. Instead of two types of interfaces, one more
suitable for novices and one more suitable for expert users,
the WYSIWYG interface met the needs of both groups. By
using a WYSIWYG interface, it encourages the user to ex-
plore the data. The interface is also flexible, allowing the
user to choose their actions in any order.

2.2 Museum Guides

There is a lot of research in regard to museum guides. Mu-
seums are interested in creating more engaging experiences
for their visitors [Al Takrouri et al., 2008].

2.3 Centre App 7

One aspect of research into museum guides is to provide Museum guides can

provide

context-aware

information.

context-aware information. Museum apps can provide
context-aware information in different ways such by the
user scanning QR codes, using visual recognition, or by
tracking the users location [Wein, 2014]. Location tracking
allows the user to move freely and still be presented with
relevant information [Lanir et al., 2011]. Location tracking
can be achieved in many different ways. Zafari et al. [2019]
provides a detailed comparison of different wireless tech-
nologies that can be used for tracking such as Wifi, Blue-
tooth, and RFID.

Context-aware information is not limited to location, Context-awareness

uses features such

as location or visitor’s

interests.

though. It can also use personal or environmental factors
such as the visitor’s interests or the time of day [Cheverst
et al., 2000]. In their GUIDE Project, a guide for the city of
Lancaster, users are able to create custom tours based on
selected points of interest (POI).

Another aspect of research concerns new ways of deliver- Augmented reality is

a modern way to

present museum

content.

ing multimedia content to the visitors. Even before it be-
came widely available with smartphones, researchers ex-
plored augmented reality (AR) as a way to deliver content.
For instance, Vlahakis et al. [2002] used a laptop and head-
mounted display to show a rendered model of the original
building over Greek ruins.

Ding et al. [2017] provide a view into AR being used in mu- Using a smartphone

for AR feels natural.seum apps. Using a smartphone for AR content feels nat-
ural to visitors because they are already using their smart-
phone to take photos. They also look into different types of
museums and their respective use of AR: providing addi-
tional information for artwork, bringing skeletons back to
life, or showing translations for exhibits.

2.3 Centre App

Our museum content editor is build for the Centre app and
its set of features. As we have already mentioned, a lot of
these features can be found in museum apps all around the
world.

8 2 Related Work

(a) Small (zoomed out)
map of the museum.

(b) Large (zoomed in) map
of the museum.

(c) An exhibit with child
exhibits.

Figure 2.1: The map of the Centre app. Here, visitors can browse and explore all
the available exhibits and their locations.

When a user opens the Centre app for the first time, theyThe Centre app

provides content in

multiple languages.

are presented with an info screen asking them to select their
preferred language. The app is providing content in Ger-
man, English, French and Dutch, although this can vary for
individual exhibitions.

When the user opens an exhibition, the app shows a map ofUsers can explore

exhibits on an

interactive map.

the museum floor with exhibits on it. The user can zoom in
and out of this map. Figure 2.1a shows the zoomed out map
(hereinafter small map) and Figure 2.1b shows the zoomed
in map (hereinafter large map). Some exhibits might be hid-
den on the small map and are only visible once zoomed in.

Some exhibits have child exhibits (Figure 2.1c), for instanceExhibits can have

child exhibits. if two exhibits are too close to each other to be shown as
single exhibits.

2.3 Centre App 9

(a) Audio guide interface. (b) Audio guide interface
with a different image after
a certain timestamp.

(c) Alternative text content
instead of audio guide.

Figure 2.2: Each exhibit presents its information either as an audio guide (a,b) or as
text content (c).

The Centre app presents content in one of two ways. Firstly, The content is

available as an audio

guide or text.

it offers an audio guide (Figure 2.2a). The audio guide
shows an image on top, which can change during playback
to match the spoken content. Figure 2.2b still shows the
same audio guide but at a later time with a different im-
age reflecting the current content. Alternatively, content is
provided in text form (Figure 2.2c). In that case, images are
displayed within the text content.

11

Chapter 3

Initial Considerations

In this chapter, we have a look at the stakeholders involved
in the project, the situation and workflow without a con-
tent editor, and the requirements for the final product. We
will also have a look at code design decisions that are used
throughout the design process.

3.1 Stakeholders

There are two main stakeholders involved in the develop-
ment and content creation for the Centre app:

1. There are the people at the museum who provide The people at the

museum provide the

content.

the museum content for the app and design mock-
ups of how the exhibitions should look like. This in-
cludes designers, editors, translators, photographers,
and record artists.

2. There is the app development team who develops the The app

development team

adds the content to

the app.

mobile apps, formats new content and integrates it
into the app.

Content between both stakeholders is exchanged via email. Content is

exchanged via email.The people at the museum send new content to the app

12 3 Initial Considerations

development team. This content consists of images and a
single text document containing the text content for all ex-
hibits in a single language. This also includes an image of
the map with locations of the exhibits drawn on it as well
as design mock-ups for the style of the exhibition.

The app development team incorporates the content intoContent exchange

between both

stakeholders is

inefficient.

the app and applies the styling based on the mock-ups. We
have a detailed look at this workflow in Chapter 3.3. Once
the new content is added, the development team sends
screenshots back to the people at the museum for approval.
However, positioning exhibits based on a drawing is not
really precise or some titles can be too long in certain local-
izations. Thus, the fine-tuning requires a lot more commu-
nication back and forth.

3.2 Centre App Data Structure

Before we can describe the workflows for adding and edit-
ing content, we need to have a look at how the Centre app
works and the data structures that it requires:

The Centre app uses the same data structure for iOS andThe data structure is

identical for iOS and

Android.

Android that is illustrated in Figure 3.1. Each exhibition
has one folder containing all the exhibits and required files
(map background image, Style.json) and separate folders
with a language suffix containing all the audio files for
this language. This separation makes the initial download
faster. At runtime the user can choose to download the au-
dio files for their preferred language only.

Every exhibit inside the exhibition folder has its own folderThe Centre app uses

a multi-level folder

structure containing

multiple different file

types.

that contains all the information for this exhibit. There is
a JSON1 file containing most of the information (e.g., ti-
tle, number, coordinates) and an HTML2 file for each lan-
guage containing the text content. The folder also contains
a thumbnail image shown on the map and additional im-
ages shown in the audio player or within the text content.

1https://www.json.org/json-en.html
2https://html.spec.whatwg.org

https://www.json.org/json-en.html
https://html.spec.whatwg.org

3.2 Centre App Data Structure 13

Exhibition A

Exhibition A-de

Exhibition A-en

Exhibit 1

Exhibit 2

MapImage.png

Style.json

Exhibit 1.json
Exhibit 1-small.png

de.html
en.html
Additional Images

...

Exhibit 1.m4a
Exhibit 2.m4a

...

Figure 3.1: Simplified files and folder structure used by the
Centre app. This sample exhibition contains just two ex-
hibits and supports only two languages.

Furthermore, exhibits can have child exhibits as well. These Exhibits can have

child exhibits.are the same folders inside an existing exhibit folder. How-
ever, the depth is limited to just one; thus, child exhibits
don’t have children themselves.

Exhibit folders are named after an identifier and its JSON Files and folders

have fixed naming

conventions.

file and map thumbnail image use the same identifier as a
name (the map thumbnail image adds a “small”-suffix to
the identifier). In most cases, this identifier is also used in
determining the sort order.

14 3 Initial Considerations

The “Style.json” contains a list of style attributes for the ex-Exhibition styling is

described in a JSON

file.

hibition. This includes information such as colors (as an
RGB hex string; e.g., #FF0000 for red), fonts, sizes, and the
width of the border. The color attributes can be a single
value used in both light and dark appearance or a different
values for each appearance.

3.3 Current Workflows and Limitations

We observed the app development team to understand the
workflows they currently use and, based on that, created a
list of requirements (see Chapter 3.4) for our museum con-
tent editor. We now have a look at three of these workflows
and their limitations:

The first workflow is about adding and editing exhibits.Manually editing the

data structures takes

a lot of effort.

This firstly requires navigating to the correct folder in a
multi-level folder structure. Adding a new exhibit either re-
quires knowledge of all the naming conventions and struc-
ture of the JSON file or, more likely, copying an existing
folder and changing all the values. Editing the exhibit
means editing different files in different formats. The JSON
file for general information, HTML files for localized con-
tent, image files that need to be resized to a certain resolu-
tion. Adding audio files requires looking up the identifier
in the JSON file and then adding the audio file with this
name to different folders for different languages.

The second workflow concerns a certain aspect of the ex-Previewing changes

requires to build and

run the app.

hibit: its position on the map. The position is saved within
the JSON file as an {x,y}-coordinate (the top left corner
equals {0,0}, and the bottom right corner equals the dimen-
sions of the map image which vary for each exhibition).
As we have previously described in Chapter 3.1, the po-
sitions of images are provided in form of an image with the
positions marked. Based on this image, the app develop-
ment team has to guess the coordinates of the exhibit and
enter them into the JSON file. To verify the coordinates,
they have to build and run the app and compare the posi-
tion within the app with the one provided by the drawing.
Then they have to adjust the JSON file coordinate accord-

3.4 List of Requirements 15

ingly and repeat this process until the positions match. We
took a time measurement of this workflow to highlight its
downside: From saving the JSON file, building the app in
Xcode3, and navigating to the exhibition in the app it took
⇠12 seconds to just see the results of the changes.

The third workflow is about editing the exhibition style. JSON values have to

be inferred from a

mock-up.

And it has the same problems as does the positioning. All
style attributes are stored inside the “Style.json” and, simi-
lar to the positioning, their values have to be inferred from
a mock-up image. Getting the colors as an RGB hex string
requires a tool such as the “Digital Color Meter” app to an-
alyze the color of a pixel. Here, the app development team
often has to further adjust the color because the colors used
in print are too bold or too saturated. And this, too, requires
that the app is built and run in order to see and verify any
changes and compare them to the mock-up.

3.4 List of Requirements

Based on our observations of the current workflows (Chap- We created the list of

requirements based

on the existing

workflows.

ter 3.3) and requests by the app development team, we cre-
ated a list of requirements for the museum content editor.
We now have a look at the key features that the museum
content editor should offer. A detailed list of all require-
ments and features can be found in Appendix A.

• The ability to create new exhibitions and exhibits, in-
cluding the necessary files and folders.

• A WYSIWYG editor to edit and preview exhibition
styling.

• An interactive map that allows to position the ex-
hibits with drag and drop.

• Browsing and editing all exhibits, setting values such
as title in all supported languages, adding images and
setting up the audio guide.

3Build time depends on multiple factors such as CPU. We measured
with a clean build and the simulator already running on an M1 chip.

16 3 Initial Considerations

• The content editor should be expandable, i.e. de-
signed in a way that allows easy integration of ad-
ditional features in the future.

Besides the content editor, we also planned for a second
piece of software to improve the content exchange between
the people at the museum and the app development team.
More specifically, we wanted to improve the workflow for
exchanging the positions of exhibits on the map.

The idea is to build a lightweight website, that allows theThe website makes

fine-tuning exhibit

positions faster and

easier.

positioning via drag and drop. This website is intended to
be used by the people at the museum instead of marking
the positions of exhibits on an image of the map. Drag and
drop not only makes their workflow easier and faster, it also
provides the app development team with a precise position
for each exhibit. Any changes to the exhibits can then be
sent back to the app development team via email in JSON
format and the content editor offers an import function for
this JSON data; thus it eliminates the need to guess exhibit
positions based on image markings.

The requirements for this website are the following: it
works with any modern browser, it runs without a server,
it doesn’t require any changes to the browser security, and
it should be intuitive to use and robust.

3.5 Platform and Code Design Decisions

3.5.1 Content Editor

We decided that the platform for the content editor would
be macOS with Swift4 as the programming language. In
contrast to the mobile apps, which are designed to run on a
large number of devices and thus have to support older op-
erating systems (iOS 9 and Android 6) as well as the most
recent ones, the content editor does not need this back-
wards compatibility.

4https://developer.apple.com/swift/

https://developer.apple.com/swift/

3.5 Platform and Code Design Decisions 17

The typical design pattern for an AppKit macOS app is the The content editor

uses MVC and

reactive

programming.

Model-View-Controller (MVC) pattern. However, given
the size and complexity of the app, we also use reactive
programming with declarative code to process values over
time. This was achieved by utilizing Apple’s Combine
framework5, a relatively new framework that bundles all
the previous asynchronous event handlers (Notifications,
Key-value-observation) into one. We use reactive program-
ming mostly to update the UI (e.g., updating the live pre-
view map) when the model changes and by doing so reduc-
ing the amount of code in the controller.

We also decided to reuse some of the code from the iOS mo- We reuse some of

the iOS app code to

make maintenance

easier.

bile app to make it easier to maintain or add new features
to both. This applied to the model objects for exhibit and
style. We also tried to use the same names for variables.
However, some adjustments were necessary. For instance,
the iOS app only needs to read the data and could there-
fore rely on value types (structs). The content editor on the
other hand uses reference types (classes) to allow changes
from multiple different views. There were other necessary
changes such as editing all languages in the content editor
(as opposed to displaying just one in the mobile app) and
supporting light and dark appearances6 at the same time
(as opposed to just the current appearance in the mobile
app).

A final decision regarded data storage: The decision was The content editor

uses the same data

structure as the

mobile apps.

between keeping the folder structure as described in Chap-
ter 3.2 or create a new model in CoreData. Using CoreData
would have potentially improved performance a bit, but
we decided to keep the mobile app folder structure for two
reasons:

1. It remains a single source of truth (SSOT), meaning
that the model is saved in one location only and is
therefore always up-to-date. This also eliminates the
need to export the data for every change.

5https://developer.apple.com/documentation/combine
6When we talk about light and dark appearance, we refer to the de-

picted appearance of the WYSIWYG part of the content editor and not
the appearance of the content editor itself.

https://developer.apple.com/documentation/combine
https://developer.apple.com/documentation/combine

18 3 Initial Considerations

2. It still allows for manual edits if required. It also al-
lows potential scripts to batch edit a lot of files at once.

Working on the original data meant that we had to put spe-
cial emphasis on write safety as not to corrupt the data by
accident and build in measures to prevent errors (Nielsen’s
fifth usability heuristic) or recover from them [Norman,
2013] with undo capabilities implemented throughout the
editor.

3.5.2 Website

The website is supposed to be small and lightweight. ThisThe website is

dynamic and

generated at runtime.

meant that we designed the website in HTML5, CSS and
JavaScript without using any third-party libraries. The idea
was to use the HTML <template>-tag to create the web-
site dynamically from JavaScript at runtime with the data
provided by a JSON file.

However, there is a problem with accessing a local JSON
file, even in the same folder, with the browser default
Cross-Origin Recourse Sharing (CORS) restrictions. In-
stead we use a JavaScript variable containing the JSON data
as a single string. This variable along with exhibit thumb-
nail images are all generated by the content editor.

We discuss the design of the website in Chapter 4.3.

19

Chapter 4

Iterative User Interface
Design

We developed our museum content editor with a human-
centered design process [Norman, 2013] and worked
closely with the app development team to ensure that all
requirements are met and that usability is high. The design
process is iterative following a DIA cycle (Design - Imple-
ment - Analyze) and with each iteration we refined the user
interface (UI) or parts of it.

In Chapter 4.1, we describe initial design concepts in form
of paper prototypes and digital mock-ups. These designs
are focused on the UI as a whole. In Chapter 4.2, we con-
tinue with a higher fidelity horizontal software prototype
and focus on some individual elements of the UI. Finally,
in Chapter 4.3, we describe the first feature complete soft-
ware prototype that we evaluate in a user study in Chapter
5.

4.1 Paper Prototypes

We started the design process by analyzing our list of re-
quirements (Chapter 3.4) and came up with three elements
that the content editor would need:

20 4 Iterative User Interface Design

Figure 4.1: A paper prototype of the initial three-pane win-
dow design: style (left), map (center), and exhibit (right).

1. A front-end to edit the style JSON file.

2. A front-end to edit exhibits.

3. A live preview of the map, showing the exhibits at
their correct positions and reflecting the changes to
the style.

As an initial design we created a three-pane window con-The initial paper

prototype design

uses a single

three-pane window.

cept with each pane containing one of the three main
features: the style attributes on the left, the map (with
WYSIWYG) in the middle, and the exhibit on the right.
Here we considered showing a single exhibit selectable
from the map or a scrollable list of all exhibits. This design
as paper prototype is shown in Figure 4.1.

We then analyzed how users would interact with this de-We had two

concepts for

browsing exhibitions:

a fourth pane or a

welcome window.

sign. We had a list of tasks based on the former workflows
and analyzed how users would perform them in this pro-
totype. Early on, we discovered one shortcoming: The de-
sign only shows a single exhibition and lacks the option to
browse all the available exhibitions. We came up with two
solutions as shown in Figure 4.2. The design on the left (a)

4.1 Paper Prototypes 21

(a) Four-pane window with exhibitions in the left
sidebar.

(b) Separate window to browse exhi-
bitions and original three-pane win-
dow.

Figure 4.2: Two concepts of how to handle exhibition browsing: four-pane window
(a) and welcome window opening the three-pane window (b).

uses a fourth pane at the left most position to browse and
select exhibitions. The design on the right (b) shows a sep-
arate window (“welcome window”) when the app launches
where the user can select the exhibition. The selected ex-
hibition then opens in the previously designed three-pane
window.

We compared the two designs with each other. While a sin- We decided to use a

skippable welcome

window.

gle window would be less cluttered and possibly reduce
mouse travel times, we decided against it and chose the
welcome window concept instead. We assume that a user
would typically only work on a single exhibition (e.g., a
new temporary exhibition). Therefore, a fourth pane that is
interacted only ones at launch would take up a lot of screen
space despite being used little to none. Based on this, we
also decided to provide the option to skip the welcome win-

dow altogether and launch directly into the newest exhibi-
tion.

22 4 Iterative User Interface Design

Figure 4.3: The three-pane concept with welcome window as digital mock-up created
in Affinity Photo.

The welcome window has another advantage: apps only have
access to certain files and directories when using App Sand-
box1, a default security measure. In the welcome window, the
user can select the content directory and thereby grant the
app permanent access to the directory.

We decided to continue with a higher fidelity at this point
and created a mock-up of our paper prototype in Affinity

Photo to get a better understanding of how the user inter-
face would actually look like. This design mock-up of the
welcome window and the three-pane exhibition window is
displayed in Figure 4.3.

However, this revealed a major flaw in our design con-The exhibit content is

too extensive to be

placed in a sidebar.

cept: The content for each exhibit is way too extensive to be
placed in, what effectively is, a sidebar. It also made it un-
necessarily difficult to visualize the tree-like exhibit struc-
ture that we described in Chapter 3.2.

We removed the exhibit sidebar and thus turning the for-We created a second

window with an

outline view and

exhibit editor.

merly three-pane window into two panes with the style in
the first pane and the interactive map in the second pane.
And we designed a second window with an outline view2

on the left and an editor on the right (see Figure 4.4).

1https://developer.apple.com/documentation/security/app sandbox/
2https://developer.apple.com/documentation/appkit/nsoutlineview

https://developer.apple.com/documentation/security/app_sandbox/
https://developer.apple.com/documentation/security/app_sandbox/
https://developer.apple.com/documentation/appkit/nsoutlineview

4.1 Paper Prototypes 23

Figure 4.4: A mock-up of separate windows for different workflows. The window
on the left shows the style and map. The window on the right shows the exhibit
tree structure and the exhibit content editor.

OUTLINE VIEW:
An outline view is a UI element for displaying tree struc-
tures. Children of parent nodes are indented and parent
nodes have a disclosure triangle to collapse or expand
their children.

Definition:

Outline View

The outline view allows the user to browse all the exhibits
hierarchical and upon selecting one it is editable in the right
part of the window. This design has the additional bene-
fit that the user can focus on a single exhibit when editing
without getting overwhelmed by too much data. This con-
forms greatly with Nielsen’s eighth heuristic that the user
interface should only display information relevant for the
current task.

While this solved the issue of a cramped user interface We merged the two

windows into one by

using workspaces.

we did not like the idea of having two separate windows
for data within the same context. Both windows belong
to the same exhibition and work on the same data so it
didn’t make sense to separate them [Lauesen and Harning,
2001]. We experimented with the concept of “workspaces”
by adding a popup button to the right side of the toolbar.
That way, we went back to a single window that would
change the entire user interface based on the current work-
flow. This is something that other applications, that offer
a lot of different tools and workflows (e.g., photo or video
editing software such as Affinity Photo or Adobe Lightroom),
do as well.

24 4 Iterative User Interface Design

The benefits are that this way the same data is only asso-Workspaces have

lower interaction

costs than multiple

windows but slightly

worse discoverability.

ciated with a single window and by implementing mean-
ingful keyboard shortcuts (we decided on + 1 , +

2) changing workspaces would be a lot faster and require
less interaction costs [Budiu, 2013] than selecting a differ-
ent window. The workspaces have the same advantages
that we had with multiple windows, i.e., allowing the user
to focus on a single workflow at the time by removing un-
necessary UI elements and thus removing distractions. It
also makes the editor easier to expand in the future if new
features should be added. The only downside is that dis-
coverability might suffer; something that we tested during
our user study (Chapter 5.4).

We simulated the workspace behavior with multiple layers
inside Affinity Photo. However, at this point it became more
and more important to actually be able to interact with the
prototype that we decided to continue with a horizontal
software prototype based on this design.

4.2 Software Prototypes

We created an initial horizontal software prototype in
Xcode3. We also implemented the read function for the ex-
hibition data in order to display real values in the user in-
terface instead of placeholders. This made it a lot easier to
evaluate the UI and adjust sizes and margins based on the
data. The project file and all the code is available here4.

When building the user interface, we made sure to only rely
on standard UI elements so that the user interface feels fa-
miliar. We also followed the Human Interface Guidelines5

so that the content editor matches the expected macOS look
and design. For icons we use SF Symbols6, a library of
icons designed by Apple to work seamlessly with the sys-
tem font.

3https://developer.apple.com/xcode/
4https://git.rwth-aachen.de/i10/Centre-Editor
5https://developer.apple.com/design/human-interface-

guidelines/macos/overview/themes/
6https://developer.apple.com/sf-symbols/

https://developer.apple.com/xcode/
https://git.rwth-aachen.de/i10/Centre-Editor
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/sf-symbols/

4.2 Software Prototypes 25

Figure 4.5: The design for the exhibition setup assistant.
Only a name is required to create a new exhibition, every-
thing else is optional for a more convenient setup process.

In the next part of this chapter we have a detailed look at
some particular aspects of the UI and how we refined them.

4.2.1 Exhibition Setup Assistant

When creating a new exhibition the only requirement is We created a setup

assistant for creating

new exhibitions.

a name that is used to create the exhibit folder and audio
folders. However, we created a wizard-style assistant, too.
Figure 4.5 shows our design of the Exhibition Setup Assis-

tant. In addition to the required name text field, users can
add the map background image, select the available lan-
guages and batch import exhibits based on audio files. All
these additional inputs are optional and can also be added
and changed from within the exhibition window.

The exhibit batch import is a convenience feature that The assistant can

automatically create

exhibits for all audio

files.

makes the initial setup a lot easier and faster. For exhibi-
tions with audio guide, there is usually an audio file for

26 4 Iterative User Interface Design

each exhibit. When the user chooses to import this folder
containing the audio files, the setup assistant can automat-
ically create a new exhibit for each audio file and arrange
them in a grid pattern on the map.

There are certain usability issues with wizards such as
higher interaction costs and potentially blocking the app
due to modal windows [Budiu, 2017]. Those issues don’t
really apply to our exhibition setup assistant.

Firstly, the creation of a new exhibition is a relatively rare
occurrence. Thus, even users familiar with the content ed-
itor can benefit from additional guidance through the pro-
cess. The assistant is also not modal and does not block
the remainder of the content editor. Lastly, apart from the
name all consecutive steps are entirely skippable.

4.2.2 WYSIWYG Style Editing

Style attributes, just as exhibit information, is stored in a
JSON file. For both, we use the same concept to work with
the files: Firstly, we use a Codable

7 private struct that is
modeled after the JSON file contents and handles reading
from and writing to the file. However, as we have already
mentioned in Chapter 3.5.1, a struct is a value type and
we need a reference type (class) in order to use Combine
Published

8 properties. In case of the style, we therefore
use a class that uses the Codable struct internally to ini-
tialize and to save changes to the JSON file. This class con-
forms to the ObservableObject9 protocol which means
that it can notify the user interface if any of its properties
change. Each style property uses the @Published prop-
erty wrapper which in turn can notify the user interface if
this particular value changes.

The advantage of this approach is that with very little codeWe use Combine to

effortlessly update

the UI.

we are able to update the model and update every part of
the user interface that is affected by the change. This is also

7https://developer.apple.com/documentation/swift/codable
8https://developer.apple.com/documentation/combine/published/
9https://developer.apple.com/documentation/combine/observableobject

https://developer.apple.com/documentation/swift/codable
https://developer.apple.com/documentation/combine/published/
https://developer.apple.com/documentation/combine/observableobject

4.2 Software Prototypes 27

(a) NSColorPicker (b) NSFontPanel

Figure 4.6: macOS provides native UI elements to edit colors (a) and fonts (b).

especially useful if new style attributes were to be added
(see Chapter 6.2). The second advantage of the Style class
is that we cast the optional values from the JSON file into
their proper types and provide default fallback values if
some are missing.

With the use of Combine, this code is fully capable of han-
dling WYSIWYG. Any change is instantly applied to the
user interface and thus provides a live preview. We now
look at the design of the user interface and our attempts to
make editing the style more natural and convenient.

Style attributes are mostly one of three types: Colors repre-
sented by an array of String (one or two elements), fonts
represented by a String containing the name of the font
and its size, and numbers either as Int or Float.

A color can either be a single color used in both light and The control for

editing color uses the

native NSColorWell

and NSColorPicker.

dark appearance or it can have one separate values for each
appearance. To edit color, we use the native NSColorWell
component, that displays the current color and shows the
system provided NSColorPicker (Figure 4.6a) on click
where the color can be changed. The color picker includes
a pipette tool to sample colors from any pixel on the screen,
thus making the “Digital Color Meter” app no longer nec-
essary.

28 4 Iterative User Interface Design

(a) UI to edit colors

(b) UI to edit fonts

(c) UI to edit numbers

Figure 4.7: The different user interface elements to edit the
style. If a value varies from the default style (c) a reset op-
tion is displayed on the right.

To use different colors for different appearances, we created
a user interface as shown in Figure 4.7a. If a single color is
used for both appearances (in this case the accent color),
only a single color well is shown. The user can add a dark
appearance variant by clicking the plus button. With differ-
ent colors for each appearance (here the interactive color),
two color wells are shown. They include a little icon to in-
dicate their respective appearance.

To edit fonts, we use a text field with the name and sizeThe control for

editing fonts uses a

text field and the

NSFontPanel.

of the font (Figure 4.7b). We also added a button to open
the system NSFontPanel (Figure 4.6b), where the user can
browse all available fonts.

To edit number values, we use text fields together withThe control for

editing numbers uses

a text field and a

stepper.

steppers (Figure 4.7c). Based on the value in question, they
increase or decrease in appropriate steps. They can also
be adjusted with and or by scrubbing their label
for quick adjustments. The latter are accelerators (Nielsen’s
seventh usability heuristic) that can speed up the workflow
for advanced users.

All these design decisions are meant to simplify editing the
style. For instance, it is no longer necessary to find out the
exact hex value of a color. All this complexity is hidden
away under familiar UI elements and handled by the con-
tent editor instead.

4.2 Software Prototypes 29

4.2.3 Multi-language Support

Unlike the Centre app, which only shows information in
one selected language, the content editor has to edit con-
tent in all supported languages. We solved this from a
code point of view by implementing a generic10 struct that
wraps the content and its associated language: struct

LocalizedContentWrapper<T> works as a getter and
setter for class LocalizedContent<T> which contains
the associated language and the generic content. This con-
tent is the same as in the mobile app and mostly String or
URL

11 but in case of the audio guide it is even an NSObject
class that contains images and their timestamps.

Originally, we used an enum for the language but during Languages are

stored in a JSON file

and editable at

runtime.

an evaluation with the app development team it became
apparent that hard-coding the languages is contrary to our
“expandable” requirement and that there are indeed use
cases where adding additional languages at runtime would
be beneficial. So instead, we used a JSON file where lan-
guages are read from and written to and which is entirely
editable at runtime.

In our initial design (three-pane window) we had only con- We designed a UI for

the exhibit editor

where all languages

are visible.

sidered the UI to show a single language. The map and
the exhibit sidebar would be the same language and users
could change the language from a segmented control in the
toolbar. With the switch towards workspaces, this limita-
tion was no longer necessary. We explored the possibility of
showing all languages in the exhibit content editor at once
in column views (Figure 4.8) as opposed to the single lan-
guage view (Figure 4.4). The design is similar to a table
with languages in each column and data in each row.

We evaluated both design concepts with the app develop-
ment team. Displaying a single language at a time has the
advantage of a cleaner UI and better focus. Displaying all
languages in columns has the advantage that all data is vis-
ible at the same time and that it is easier to spot missing
data. It also allows for two different workflows: filling out

10https://docs.swift.org/swift-book/LanguageGuide/Generics.html
11URL refers to local file urls.

https://docs.swift.org/swift-book/LanguageGuide/Generics.html

30 4 Iterative User Interface Design

Figure 4.8: A concept for showing data in all available languages. Each language
is in its own column.

a single language (vertical) or filling out a single value in
each language (horizontal). We decided to use the multi-
language column design by default, but added an option
in the settings to switch to single language mode.

4.2.4 Audio Player and Keyframes

The audio guide with its changing images is one of the key
features of how a museum visitor interacts with the Centre
app. Getting the timing of the images right is important
and we explored different designs and interactions that best
allow setting and fine-tuning keyframes12.

KEYFRAME:
Keyframes are used in animation and filmmaking soft-
ware for defining start and end points for transitions.
For the audio guide, a keyframe refers to the start point
(timestamp) of a new image.

Definition:

Keyframe

With the multi-language column design, that we intro-We tested if a longer

timeline is beneficial

for the audio player.

duced in Chapter 4.2.3, the length of the timeline became
rather short. In Figure 4.9 we tested if a full-width timeline
would be a better choice. However, it didn’t make sense

12https://en.wikipedia.org/wiki/Key frame

https://en.wikipedia.org/wiki/Key_frame

4.2 Software Prototypes 31

(a) The audio player for all languages within the columns of the localized content.

(b) The audio player for a single language with a longer timeline.

Figure 4.9: Two designs for the audio player: on the top (a), keeping the audio
player within the language columns; on the bottom (b), having an elongated time-
line for a single language.

to have part of the localized content in the column view
and another part not. Furthermore, keyframes are only set
at one-second precision. With a minimum column width
of 300px this allows audio files up to five minutes to have
keyframes accurate to one pixel. The longest audio file in
the permanent exhibition is 4:30 and the average length is
about 2 minutes. Although this might be something to re-
visit if longer audio files are used.

We considered two possible ways to add new keyframes: Keyframes can be

added by button or

with drag and drop.

one is to insert a keyframe at the timestamp where the
current playback position is at. We added a popup but-
ton for this that shows all available images that can be in-
serted. The other interaction is that the image is dragged
and dropped on the timeline at the position where the
keyframe should be created. We considered both inter-
actions very plausible and examined this during our user
study (see Chapter 5.5).

The second kind of interaction with keyframes is changing Originally, keyframes

could only be moved

in one second

increments.

their location. Here, we assumed that the keyframes are ini-
tially placed in the approximate location where they should
be. Then, they would only need to be fine-tuned to the au-
dio. So we added a context menu to move them one second
forwards or backwards (the precision of timestamps is only
to the second).

32 4 Iterative User Interface Design

Figure 4.10: A keyframe popover where the user can set the
timestamp directly or move it in one second increments.

When we tested this with the app development team, ourWe added drag and

drop to keyframes

and allowed to set a

precise timestamp.

assumption turned out false. Often the initial placement of
keyframes was off by multiple seconds and moving them
in one second increments was cumbersome. While we still
wanted to retain the option to fine-tune the keyframes,
we also needed a way to adjust keyframes more quickly.
Firstly, we added drag and drop to the keyframes to move
them around directly. This allows to perform big adjust-
ments quickly. Secondly, we added a popover (Figure
4.10) accessible from the context menu or via double click.
Within the popover, the keyframe can be moved in one sec-
ond increments, but also directly by entering a timestamp
in the text field.

4.2.5 Error Handling

The content editor handles user input constantly. There-
fore, it is important that the editor keeps the user informed
at all times and handles errors gracefully.

If an error dialog is displayed and the content editor is ca-Error dialogs try to

offer a solution

directly from the

alert.

pable of fixing the problem itself, it will offer its solution di-
rectly from the error dialog [Shneiderman et al., 2016]. For
instance, when the user adds the same image twice to the
audio player (something that is currently not done by any
exhibition, but we didn’t want to assume that it might not
be done in the future) an info alert (Figure 4.11) is shown to
the user.

4.2 Software Prototypes 33

Figure 4.11: An info alert by the audio player offering two
possible solutions as well as an option to cancel.

It not only informs the user, that this action might not have
been what they wanted, but also offers to move the existing
keyframe to this position instead. Similarly, when adding
a new keyframe to the same timestamp as an existing one,
the user is asked if he wants to change the existing image
instead. These dialogs not only offer solutions, but also a
cancel option as an exit (Nielsen’s third usability heuristic).

In situations where the content editor can’t offer a solution
itself, it instead informs the user of possible alternatives.
For example, if the user tries to add an image in an unsup-
ported format the info dialog lists all the supported image
formats.

And if there is an error where the content editor can’t offer
a solution itself and can’t provide alternative solutions, it
displays the error message in plain English (Nielsen’s ninth
usability heuristic).

The previous errors dialogs are used in situations where an The outline view

shows error

indicators to quickly

identify exhibits with

problems.

error should be fixed right away. We also believed that a
second kind of error indication would be useful. Exhibi-
tions often have thirty or more exhibits each with a large

34 4 Iterative User Interface Design

Figure 4.12: The outline view in the exhibit sidebar shows
error and warning indicators for incorrect exhibits.

number of values with most of them non-optional. If an
exhibit has a missing value or some other kind of mis-
take (e.g., a different number of keyframes in different lan-
guages), an error indicator (a yellow triangle with an excla-
mation point for warnings and a red octagon with a cross
for errors) is displayed directly in the exhibit outline view
(Figure 4.12).

This way, the user can quickly identify exhibits with errors
and fix them. This kind of visualization is also used in IDE
software (e.g., Xcode) and should therefore be familiar to
the app development team. However, the error indicator in
the sidebar only shows that the exhibit has an error and not
what exactly the error is.

To solve that, we came up with two concepts for the exhibitThe exhibit editor

shows error

messages at the top

of the window.

window. The first one (Figure 4.13a) is to show all error
messages at the top of the exhibit editor. They are in one
prominent spot and have the error message visible at all
times. However, if the amount of errors changes, the whole
interface shifts a little bit up or down. It is also quite far off
between the error message and the value in question.

The second concept (Figure 4.13b) solves both issues by dis-The exhibit editor

shows error

indicators next to

affected values.

playing the error indicator right next to the value in ques-
tion. This way, the user will instantly associate the error
indicator with the value next to it. The downside is that the
error message is not visible. However, the Law of Proximity
[Wertheimer, 1938] suggests that items close to each other
are perceived as a unified group and thus making the error

4.3 Feature Complete Software Prototype 35

(a) This concept shows all error messages at
the top of the content editor.

(b) This concept shows error indicators next
two the values with errors.

Figure 4.13: Two concepts for highlighting wrong or missing values in the exhibit
editor: (a) shows all error messages on top, (b) shows error indicators next to af-
fected values.

message unnecessary in most cases. It can still be displayed
as a popover by clicking the error indicator though.

Both designs had their advantages and disadvantages. Ul-
timately, we decided to use the second concept with the er-
ror indicators next to the values mainly because the other-
wise shifting UI felt weird when experiencing it.

4.3 Feature Complete Software Prototype

With the UI working as intended we implemented the re-
maining missing functions. This included saving the data,
certain automations (e.g., resizing images upon import, and
generating the map thumbnail image), the addition of a
third workspace for metadata and export, and the import
and export functionality for the exhibit positioning website.

36 4 Iterative User Interface Design

Figure 4.14: The content editor exports this website that
allows the people at the museum to position the exhibits
naturally using drag and drop.

We kept the functionality of the website simple. Figure 4.14The website is kept

simple with focus on

tweaking the design

on the map.

shows our design. The main part of the website is the map
with the exhibits on it. The exhibits can be moved via drag
and drop. At the top of the website, all supported lan-
guages can be selected and previewed within the map. The
website also allows to edit the titles underneath each ex-
hibit simply by clicking on them. If any changes occur, two
buttons appear in the top right corner. The left one resets
the exhibits to their original values (after confirmation) and
the right one generates a JSON string with all the changes
and prepares an email with everything already entered (re-
cipient, subject, body) that only needs be sent.

This resulted in our first feature complete software proto-
type. At this point, we did a heuristic evaluation of the
whole user interface. We specifically checked the former
workflows, that we outlined in Chapter 3.3, to verify that
they worked as intended.

4.3 Feature Complete Software Prototype 37

Figure 4.15: The QuickEdit popover allows changing map-
related properties directly on the map workspace.

There we discovered one more usability issue: On the Map We added a popover

to exhibits on the

map to quickly

change map-related

values.

& Style (herinafter Map) workspace, users are able to edit
the style and position the exhibits. But there they would
also check the length of exhibit title and possible overlap is-
sues and whether or not exhibits would need to be hidden
on the small map. All these properties were only available
in the Exhibit Editor (herinafter Editor) workspace. Thus,
users would need to change the workspace, find the ex-
hibit in question, edit the value and change back to the
Map workspace to verify the change. Instead, we added
a feature to the map that we call QuickEdit: a popover that
appears over the exhibit either using the context menu or
the Quick Look gesture (default: three finger tap). In this
popover (Figure 4.15) users are able to change all map-
related properties of the exhibit and get an instant preview
on the map.

We also added some accelerators (Nielsen’s seventh us- We added keyboard

shortcuts for

common tasks and

expanded drag and

drop.

ability heuristic): Firstly, we added keyboard shortcuts for
most tasks (e.g., + + Number to switch between lan-
guages, or + D to toggle the current appearance). Sec-
ondly, we expanded drag and drop from external sources.
Previously, only image files could be dragged onto an ex-
hibit. We added audio files for the audio player and text
files for the text content to this.

38 4 Iterative User Interface Design

With these changes, the content editor seemed advanced
enough that we could evaluate it in a user study. Figures
4.16 and 4.17 show our final design that is used in the user
study in Chapter 5. Figure 4.16 shows the Map & Style

workspace. Figure 4.16a shows the map in light appearance
whereas Figure 4.16b shows the dark appearance. On the
right side of Figure 4.16b are static previews of the content
(i.e., for the audio guide and the text content). Figure 4.17a
shows the Exhibit Editor workspace with the exhibit list in
an outline view on the left and the editor on the right. Fig-
ure 4.17b shows the Metadata & Export workspace where the
exhibition metadata can be changed and the website and
Android dynamic feature modules can be exported.

4.3 Feature Complete Software Prototype 39

(a) Map & Style workspace in light appearance.

(b) Map & Style workspace in dark appearance with static previews shown on the right.

Figure 4.16: The Map & Style workspace is the WYSIWYG part of the content edi-
tor. Style attributes are changed in the sidebar on the left and changes are directly
displayed within the map. The map allows to position the exhibits via drag and
drop. Different languages and appearances can be previewed from controls in the
toolbar.

40 4 Iterative User Interface Design

(a) The Exhibit Editor workspace.

(b) The Metadata & Export workspace.

Figure 4.17: The workspaces for the Exhibit Editor (a) and Metadata & Export (b).
The workspaces can quickly be changed with the popup button on the right side of
the toolbar.

41

Chapter 5

User Study

We conducted a user study based on our feature complete
software prototype in order to evaluate the usability of the
user interface and get a better understanding to what kind
of interactions users might expect from a museum content
editor.

5.1 Design and Execution

The user study consisted of five tasks that tested the most We conducted a

remote user study to

test user interactions.

commonly expected user interactions. Due to the pandemic
the study was done completely remote via Zoom with Re-

mote Control. Participants were able to control the hosts
mouse and keyboard from their own computer.

Before the participants started interacting with the content
editor, we asked them to fill out a questionnaire to evaluate
their general level of experience with computers, what ap-
plications they typically use and whether or not they had
used the operating system before. We also gave them the
opportunity to test out the Centre app and explained some
of the features of the mobile app.

42 5 User Study

Then, we gave the participants the first task along with aWe used silent

observation while

participants solved

the tasks.

folder containing sample files in the same format as they
would be in a real-world scenario. We asked them to solve
the task without any assistance if possible and used silent
observation to analyze the participants actions.

Once the participant believed to have successfully solvedWe did a

semistructured

interview to learn

more about the

participant’s

reasoning.

the task we followed up with an interview. We used a
semistructured interview approach [Lazar et al., 2017] and
focussed our questions on any issues observed during the
task to find out what elements prompted certain interac-
tions. Furthermore, if participants hadn’t discovered cer-
tain interactions, we asked them where or how they would
have expected it to be instead. Following the interview, the
participant would be handed the next task.

Once all five tasks were completed, we asked the partici-
pants to fill out a second questionnaire where they would
rate four factors of the study: the mental demand during
the tasks, their confidence levels to achieve the desired re-
sults, how much effort they had to put into it and their frus-
tration levels during the tasks. All four factors are rated
from 1 to 7 with 1 indicating a better result. We were, how-
ever, more interested in general usability issues and discuss
the results of these quantifiable data in Appendix B.

In total, 14 people participated in the user study. Six partic-
ipants were female and eight male. The participants aged
between 18 and 55 (x̄ = 25.14, � = 9.78).

5.2 Task 1: Creating Exhibitions

Task Description

The first task was designed to test the setup process for a
new exhibition. Study participants were presented with the
initial empty welcome window of the content editor. Their
task was to create a new exhibition with a given name and
a deviating set of supported languages. Furthermore, they
were provided with folders containing the audio files.

5.3 Task 2: Editing Style 43

Results

All participants had no trouble to find the Exhibition Setup Creating new

exhibitions posed no

problems.

Assistant that was designed to guide them through the task.
The setup process itself did not pose any problems either.
All participants followed the structured approach of the
window from top to bottom as intended. Additionally, all
participants used the audio folder batch import as well. Al-
beit four of the participants read the accompanying fine
print more closely before deciding to do so. We actually
expected this considering that the batch import is more of
a convenience pro-feature. For this reason we had added
the fine print in the first place and not hidden it away in a
tooltip.

5.3 Task 2: Editing Style

Task Description

The second task tested the interactions necessary to change
the styling of the exhibition. We presented the participants
with two images depicting the desired look for exhibits on
the map for both light and dark appearance. This included
changes to all different attributes (colors, fonts, numbers)
as well as different styles in light and dark appearance.

Results

Editing style in different appearances turned out to be the Participants had

trouble discovering

the appearance

toggle.

greatest issue in the study. No participant was able to eas-
ily find the appearance toggle in the toolbar. Three partici-
pants were also unable to find the appearance toggle with-
out help which we considered an unsuccessful completion
of the task.

The main source of confusion was that the map per default
displayed the light appearance and whenever the partici-
pant would try to edit a style attribute in dark appearance

44 5 User Study

Figure 5.1: A floating bar at the bottom of the map showing the appearance selec-
tor on the left and the language selector on the right. This way, it has a stronger
association with the map and easier discoverability.

those changes would not be reflected on the map. This led
to further confusion about whether or not they were doing
something wrong or if they might be editing a wrong style
attribute altogether.

Discussion

We addressed this issue by changing two things. Firstly, weWe increased the

discoverability of the

appearance toggle.

moved both the appearance toggle together with the lan-
guage picker from the toolbar to a footer bar on the map.
The goal was to have a stronger association with the map
as it is floating on top of it as well as moving it to a more
unique place to better gain the users eye and thereby in-
creasing its discoverability. This new design is shown in
Figure 5.1.

Secondly, we added an additional dialog that shows up af-We added an alert to

teach the user about

different

appearances.

ter the user has edited a color in a different appearance than
his current one (Figure 5.2). This dialog informs the user
about why he does not see his recent changes reflected,
explains where to change it and offers to change the ap-
pearance for the user. Furthermore, it offers a Remember

my choice-checkbox, basically allowing the user to automat-
ically switch the appearance if they choose to. This setting
can be changed at any time in the Preferences window of the
content editor.

5.4 Task 3: Editing Exhibits 45

Figure 5.2: An info dialog informing the user about differ-
ent appearances.

5.4 Task 3: Editing Exhibits

Task Description

The third task tested the editing of exhibits. Participants
had to position the exhibits on the map based on a sketch
and fill out one exhibit based on images and text files pro-
vided to the participant.

Results

All participants arranged the exhibits on the map using
drag and drop.

To fill out all the other information, the participants had Participants had

different notions of

where to change the

workspace.

to change the workspace from Map to Editor. The differ-
ent strategies are depicted in Figure 5.3. While every par-
ticipant was able to achieve it, only three users found the

46 5 User Study

0 1 2 3 4 5 6

Toolbar selector

Toolbar selector
(after looking elsewhere)

QuickEdit popover

Other (Main menu,
keyboard shortcut)

Figure 5.3: Comparison of how study participants changed
the workspace. About one third did not discover the
workspace selector in the toolbar.

workspace selector in the toolbar instantly. Six participants
found it in the toolbar after looking in other places first and
five participants used the QuickEdit popover to change the
workspace. Two participants were uncertain if changing
the workspace without saving would result in loss of data.

Another issue was that the content editor automatically cre-The automatically

generated map

thumbnail image was

confusing.

ates a map thumbnail image when the first image is added.
It confused all participants that instead of the one image
that they added two appeared instead. Though they were
able to figure out what happened based on the map icon
underneath the image.

We also observed how the participants entered the local-
ized content into the editor. Nine participants filled out a
single value in each language. Five participants filled out a
single language at the time.

Discussion

Since the discoverability of multiple workspaces had beenThere is no

standardized position

for a workspace

selector.

one of our concerns during the design phase, we followed
up on this during the interview. Those participants who
had less problems changing the workspaces had previously
worked with software that also uses multiple workspaces.
Those included Affinity Photo, Adobe Photoshop, DaVinci Re-

solve, and Blender. However, to the best of our knowledge,
there is no standard of where to place the workspace se-

5.4 Task 3: Editing Exhibits 47

Figure 5.4: To avoid confusion the map thumnail image is
now in its own separate row.

lector. Some apps use the top right corner of the toolbar
(where we had placed it based on our own experiences),
others the top left corner of the toolbar and others use a
bottom tab bar. Study participants would start to look for a
workspace selector based on their previous experiences.

Without a standardized position, we reconsidered our ini- We changed the

position of the

workspace selector

to the left side of the

toolbar for better

discoverability.

tial placement of the workspace selector and thought about
where it would best be placed logically and best for usabil-
ity and discoverability. The left side of the toolbar is tra-
ditionally intended for navigational items on macOS (e.g.,
the back and forwards button in Safari). Marking a tool-
bar item as navigational even places them before the win-
dow title by default. The workspace selector can be con-
sidered navigational and its more prominent position be-
fore the window title helps with discoverability. This also
makes sense from a usability point of view: When the user
changes the workspace from Map to Editor the most prob-
able next action is to select an exhibit in the sidebar. If the
workspace selector is placed on the left, above the sidebar,
mouse travel distance is reduced which makes changing
the workspace faster (Fitts’s Law).

To avoid the confusion regarding the map thumbnail im-
age, we decided to remove it from the collection view of all
images and instead add a separate row for the map image
(see Figure 5.4). That way it is also grouped together with
the other map related values.

48 5 User Study

0 1 2 3 4 5 6

Drag & drop

Jump to timestamp
+ Drag & drop

Jump to timestamp
+ Add with button

Scrub timeline
+ Add with button

Figure 5.5: Comparison of different kinds of user interac-
tion to add keyframes to the audio player. Half the users
used drag and drop, the other half added them with a but-
ton.

5.5 Task 4: Audio Player Interactions

Task Description

In the fourth task we tested interactions with the audio
player. Participants first had to place three images at cer-
tain timestamps. Then they would be asked to change a
timestamp afterwards.

Results

The results of the initial placement are shown in Figure 5.5.Participants chose

different ways to

place keyframes.

Five participants placed the images with drag and drop di-
rectly onto the timeline. Two used the current time input
text field to jump to the required timestamp and then used
drag and drop. Both participants used drag and drop with-
out the time input after the first image though. Six partic-
ipants used the time input text field to jump to the times-
tamp and use the Add Keyframe button. And one partic-
ipant moved the timeline slider to the correct timestamp
and used the button then.

When asked to change one keyframe, four participants
moved it with drag and drop. Three participants simply
deleted the keyframe via the context menu and added it

5.6 Task 5: New Exhibits and Children 49

again at the new timestamp and seven participants used
the popover to directly set the new timestamp.

Discussion

When we designed the audio player UI and interactions,
we deliberately added multiple ways to add keyframes
because we were not sure what kind of interaction users
would expect. The results of this study show that in this
case, it was an even 50:50 split between adding keyframes
via drag and drop and first finding the correct timestamp
before adding the keyframe via a button.

Likewise, participants changed keyframe positions using Participants had little

experience with

keyframes.

all the different interactions that we had added (plus delet-
ing the keyframe and adding it again). We had already ex-
perienced this during our test with the app development
team and the user study showed similar results. We be-
lieve that this might be due to keyframes not being very
commonly used in other applications apart from animation
or video editing software. Most study participants had no
prior experiences with keyframes and first had to learn how
to interact with them. So it is probably good to have mul-
tiple options to better accommodate users unfamiliar with
the keyframes.

5.6 Task 5: New Exhibits and Children

Task Description

In the fifth and final task, participants had to create a new
exhibit with a given location on the map. Then they had
to create a new group with the new exhibit and an existing
one (to create child exhibits).

50 5 User Study

Results

Ten participants created the new exhibit in the Editor

workspace from the sidebar and would then change the
location on the map. Four participants used the Map

workspace to create the exhibit right at the desired location.

To create a group, three participants used drag and dropSome participants

tried to group

exhibits on the map.

in the sidebar. Six participants selected both exhibits in the
sidebar and created a group via the context menu. Four
participants tried to group the exhibits on the map by ei-
ther attempting to drop them on top of each other (3) or
by drawing a selection frame in an attempt to select both
exhibits (1). When this wasn’t successful, all four changed
to the Editor workspace and grouped them via the context
menu. One participant was unable to group the exhibits at
all which we considered an unsuccessful completion of the
task.

Discussion

The attempts to group exhibits on the map was something
that we hadn’t considered prior to the study. Our own
mental modal [Norman, 2013] was that managing exhibits
would take place in the Editor workspace and that the Map

workspace was used as a live preview along with the ability
to edit style.

And although only four participants attempted to groupWe added the ability

to group exhibits on

the map.

exhibits on the map, their intentions made sense: An ex-
hibit group is required if two exhibits are too close to each
other or even overlap. This is something that is only no-
ticeable on the map and just then a user would decide to
group them. Therefore, we added the option to create ex-
hibit groups from the map.

5.7 Conclusions 51

Figure 5.6: The map allows the user to select multiple ex-
hibits at once.

5.7 Conclusions

The intent of the user study was to find out about general
usability issues as well as to learn what kind of interactions
users expected for certain tasks. While we were more inter-
ested in general trends and issues, we evaluated individual
user interactions and feedback as well. Two of them we
want to discuss further.

Firstly, one study participant tried to draw a selection frame We added multiple

selection of exhibits

to the map.

around multiple exhibits on the map (see Chapter 5.6). Al-
though this was a single occurrence, selecting multiple ex-
hibits on the map certainly has benefits. It is not just use-
ful for grouping exhibits (as intended by the participant)
but also allows the user to move multiple exhibits at the
same time. We added the option to select multiple ex-
hibits on the map either by drawing a selection frame or
by clicking while pressing . However, to not mess up
the WYSIWYG aspect of the map, we couldn’t highlight se-
lected exhibits by, for instance, a bordered frame around
them or an opaque overlay. We decided that, when multi-
ple exhibits are selected, they are displayed just as they are
supposed to be whereas all exhibits currently not selected
have a slightly reduced opacity as shown in Figure 5.6.

52 5 User Study

The second change was based on feedback by a single par-We made the app

more consistent with

macOS.

ticipant: During the interview after completing task 2, they
pointed out that it would make sense to move the style
sidebar from the left side of the window to the right. That
way it would follow the established macOS window lay-
out: navigation on the left, content in the middle and tools
or inspector on the right. Though we couldn’t find a guide-
line explicitly stating this, it is used throughout the system
(e.g., in Finder, iWork, Xcode, Photos). Our placement of
the style on the left came from the initial three-pane con-
cept and we hadn’t revisited it ever since. But placing it on
the right side of the window made sense and better matches
users expectations.

In conclusion, the user study confirmed that the content
editor is mostly working as intended. We addressed the
one major usability issue (editing style attributes in the cur-
rently inactive appearance; see Chapter 5.3) and adjusted
some UI elements based on user feedback.

The use of multiple workspaces, once discovered, worked
really well. Although all participants were inclined to look
for a solution at their current workspace first. If that was
unsuccessful, they explored other workspaces to check if
the task could be solved there.

53

Chapter 6

Final Product and
Conclusions

With the user study completed, we added some finishing
touches to the content editor and prepared it for its first
real-world usage.

6.1 Finishing Touches

The final changes to the content editor were mostly quality- We added more

feedback for the user.of-life improvements but did also contribute to the overall
usability. Firstly, we analyzed where users might experi-
ence slight delays and would require some sort of feed-
back (Nielsen’s first usability heuristic). A small (⇠one sec-
ond) delay happens when an exhibition is opened from the
welcome window

1. We added progress indicators to inform
the user that the exhibition is indeed loading. We also use
progress indicators when creating a new exhibition and us-
ing the exhibit batch import.

We also improved the validation of menu items. Menu We improved menu

validation.items that only work on a certain workspace are hidden for

1The delay varies based the size of the exhibition and the speed of
the data storage. The one second delay was measured opening the per-
manent exhibition (61 exhibits) from an SSD.

54 6 Final Product and Conclusions

all other workspaces. And menu items that can’t be per-
formed (e.g., because they require at least two exhibits to
be selected and currently only one is selected) are grayed
out to indicate to the user that their action is not possible at
the moment.

Finally, we improved the workflow for adding exhibits di-
rectly on the map. Previously, that would simply create a
new empty exhibit at the position of the click. Now the
QuickEdit popover opens automatically so that the user can
name the new exhibit right away.

With these changes, the content editor was ready for its first
use in a real-world scenario.

6.2 Real-World Application and New Fea-
tures

The content editor has successfully been used by the app
development team during their work for an upcoming ex-
hibition. Their feedback was that working with the content
editor is quite nice and a lot faster than before.

The upcoming exhibition has a new feature concerning theAn upcoming

exhibition needs

additional features.

style. Unlike previous exhibitions, where some exhibits
would simply be hidden on the scrolled out map (small
map), the new exhibition would instead decrease the size
of exhibits. So on a small map exhibits can either be dis-
played normal (i.e., displayed according to the small style
attributes), hidden, or minimized. The new minimized
style would also use a different background color. We have
previously named expandability as a requirement and with
this new style we had an opportunity to test this claim.

Adding the new style to the exhibit was quite simple. In-
stead of a Bool we used an enum. New exhibits use the
enum automatically and opening an old exhibit without the
new style attribute in its JSON simply falls back onto the
old Bool value. In the user interface, we only needed to
swap the checkbox to a segmented control and add the new

6.3 Conclusions 55

minimized case to the ExhibitView that is displayed on
the map.

Adding the new background color to the style was just Only four edits are

necessary to add

new style attributes.

as simple and only required adding it in four places in
code: The Codable struct that reads from the “Style.json”
file, the Style class where the new value is properly cast
and saved, in the style NSCollectionViewItem where
the new value is added to the user interface along with a
getter and setter, and in the ExhibitView where the
new background color is applied. Due to our use of Com-
bine these are the only necessary changes: two to add it to
the model and two to add it to the user interface.

6.3 Conclusions

Our content editor was designed as an all-in-one solution
for creating and maintaining exhibitions for the Centre app.
The resulting app has numerous advantages over manually
editing the files. Most noteworthy are the improved usabil-
ity, faster completion of tasks (due to WYSIWYG and au-
tomation), and a correct (no syntax errors) generation of
files. One disadvantage is that the content editor is one
more software to maintain. We try to mitigate this by keep-
ing the code close to the iOS app, but adding a new fea-
ture to the mobile apps still requires additional steps to add
them to the content editor as well.

We now go over three aspects of our work that had the
largest impacts during the development:

The first one is the separation of different workflows into Different workspaces

help to keep the

interface clean and

users focused.

individual workspaces. With museum content being as ex-
tensive and diverse as it is and many different types of
workflows, it was the right decision to use workspaces. Not
only does it allow the user to focus on a single task at a time,
but all other workflows are still possible in the context of a
single window.

56 6 Final Product and Conclusions

Secondly, the WYSIWYG part of the content editor proba-WYSIWYG speeds

up former workflows

tremendously.

bly expedites the former workflows the most. The content
editor reduces the time to preview changes from ⇠12 sec-
onds to instantaneous. It also retains the context for the
user. They no longer have to switch between programs
(from a text editor to Xcode to the simulator) for a single
task.

Lastly, by using reactive programming we were able toReactive

programming helps

to keep the code

cleaner.

write easily expandable code. At the same time we were
able to reduce the amount of code necessary in the con-
troller; one of the issues with traditional MVC [Dobrean
and Diosan, 2019].

Finally, we want to discuss the Return on Investment (ROI).
Is it worth the time (and money) to build a content editor
for museum guides? It certainly takes some time to develop
a content editor. But using the content editor saves a lot of
time in the long run. Developing a content editor makes
sense if a museum has regularly changing temporary exhi-
bitions or if exhibits are routinely changed. The develop-
ment time for a content editor can be further decreased if
the model or other code of an already existing mobile app
can be reused in the content editor.

57

Chapter 7

Summary and Future
Work

In the following chapter, we conclude the thesis with a
summary of our findings and give an outlook into possi-
ble future work.

7.1 Summary and Contributions

In this thesis, we described the development and imple-
mentation of a content editor for museum guides. In Chap-
ter 2 “Related Work”, we had a look at research regarding
WYSIWYG content editors in general and discussed their
advantages and disadvantages. We also discussed research
regarding museum guides. This included research into
context-aware information and augmented reality. Lastly,
we had a look at the Centre mobile app that our content
editor would be based on.

In Chapter 3 “Initial Considerations”, we discussed that
there are two stakeholders involved in the project (the peo-
ple at the museum and the app development team) and that
exchanging content between them is one of the challenges.
Other challenges and limitations are a complex, rigid data
structure for the app and a tedious and lengthy process to

58 7 Summary and Future Work

preview changes. Based on this we presented a list of re-
quirements for the content editor.

In Chapter 4 “Iterative User Interface Design”, we de-
scribed the design process of the content editor in increas-
ing fidelity starting with paper prototypes of the whole
user interface. We presented some digital mock-ups be-
fore we described a horizontal software prototype. Here,
we had a look at some individual features of the content
editor, how they evolved, and how they contributed to an
overall increased usability. Finally, we presented a feature
complete software prototype.

We evaluated the usability of our content editor in Chapter
5 “User Study”, where we discovered one major usability
issue when editing style values in different appearances.
We addressed this and also improved the discoverability of
the different workspaces. Apart from this, we learned that
the editor was indeed working as intended.

In Chapter 6 “Final Product and Conclusions”, we con-
cluded our iterative design process with some finishing
touches. We prepared the content editor for its first real-
world application and tested its expandability by adding a
new feature. Finally, we presented our conclusions for the
development process as whole.

7.2 Future Work

We implemented our museum content editor with all the
features that are currently needed for the Centre app. How-
ever, any future work on the Centre app can also extend to
the content editor.

One near-term addition could be beacon technology to lo-
calize the visitors inside the museum. This is a suitable ad-
dition to the WYSIWYG part of the app. The content editor
can show the beacons on the map and possibly even help
with triangulation. We have already included marks in the
code where additional code for beacons can be added.

7.2 Future Work 59

Another possibility for future work is AR content. As we
have already outlined in Chapter 2.2, museums can use AR
content in many different ways. Adding AR content to the
content editor would probably be a completely different
workflow and also need more space. Therefore, it would be
another example of an additional workspace. For instance,
the content editor could use SceneKit1 to show previews of
3D objects used in AR.

1https://developer.apple.com/scenekit/

https://developer.apple.com/scenekit/

61

Appendix A

Full List of
Requirements

We created the following list of requirements by observing
the workflows of the app development team. It includes
additional, initial feature requests and wishes. It is not,
however, a list of all features in the final version of the con-
tent editor. During the design process, we discovered the
need for additional features which we discuss in Chapter 4.
All these initial requirements are implemented in the final
product.

• Create new exhibitions

– Create required folders and files

– Create metadata (languages, credits)

– Batch import existing audio folders with an ex-
hibit for each audio file

• Style editor

– WYSIWYG style preview

– Pipette tool

– Only save deviation from default style

– Reset to default

62 A Full List of Requirements

• Live map

– Map with exhibits correctly positioned
– Content preview for audio guide and text con-

tent

• Exhibit editor

– Tree structure sorted by id
– Warning / error indicators for missing values
– Convert text content into HTML files (maintain

bold, italic, underline)
– Import images, resize to fixed (settings ad-

justable) size
– Play audio files and set keyframes

• Export / Import

– Export website for the museum

* Work without server, without browser secu-
rity adjustments

* Show map with exhibits, supports moving
via drag and drop

* Available in German

* Send changes back via email as JSON string
– Import the website export JSON string
– Export content as dynamic feature module for

Android

63

Appendix B

Quantifiable User Study
Results

Here, we discuss the results of the user study question-
naires and other quantifiable data.

All participants were told that their goal is to solve the tasks
correctly rather than fast. But we did measure how long it
took to complete all tasks (including filling out the ques-
tionnaire). The required time was between 0:36 and 1:44
(x̄ = 1 : 05, � = 0 : 16). If we exclude the two participants
who did not have any prior experience with macOS at all,
we get 0:36 to 1:15 (x̄ = 0 : 59, � = 0 : 11).

After participants had successfully completed all five tasks,
they were asked to rate four factors. These questions were
inspired by the NASA Task Load Index1, but tailored to our
study and with a range from 1 to 7. The results inside the
brackets are the average if we exclude the two participants
without macOS experience.

• Mental Demand: This asked the participants how
mentally demanding the tasks had been with 1 be-
ing not demanding and 7 being very demanding. Partic-
ipants rated it x̄ = 2.357 (x̄ = 2.167).

1https://humansystems.arc.nasa.gov/groups/TLX/

https://humansystems.arc.nasa.gov/groups/TLX/

64 B Quantifiable User Study Results

• Confidence: This asked the participants how confi-
dent they were to achieve the desired results with 1
being very confident and 7 being little confident. Partic-
ipants rated it x̄ = 3.071 (x̄ = 2.5).

• Effort: This asked participants how hard they had to
work to accomplish the results with 1 meaning little

effort and 7 much effort required. Participants rated it
x̄ = 2.714 (x̄ = 2.25).

• Frustration: This asked participants how frustrated
and stressed they felt while performing the tasks with
1 meaning little frustration and 7 meaing much frustra-

tion. Participants rated it x̄ = 2.643 (x̄ = 2.083).

While all four factors are reasonably low, the worst rated
factor is the confidence level indicating whether or not par-
ticipants believed that their actions would yield the desired
results. We think that there are two main reasons for this:
Firstly, the content editor offers a lot of functionality. Al-
though we tried to keep the user interface as clean as possi-
ble, there are still a lot of UI elements that the participants
can interact with. Secondly, participants were unfamiliar
with the features of the Centre app prior to the study. We
gave them the opportunity to test out the app before we
began the study. However, by briefly using the app we
can’t expect study participants to have the same knowledge
about all the different features that a member of the app de-
velopment team would have.

65

Bibliography

Bashar Al Takrouri, Karen Detken, Carlos Martinez,
Mari Klara Oja, Steve Stein, Luo Zhu, and Andreas
Schrader. Mobile holstentour: Contextualized multime-
dia museum guide. In Proceedings of the 6th International

Conference on Advances in Mobile Computing and Multime-

dia, pages 460–463, 2008.

Eun Sok Bae, Dong Uk Im, and Sung Young Lee. Smart mu-
seum based on regional unified app. International Journal

of Software Engineering and Its Applications, 7(4):157–166,
2013.

Raluca Budiu. Interaction cost. https://www.nngroup.
com/articles/interaction-cost-definition/,
2013. [Online; accessed 10-September-2021].

Raluca Budiu. Wizards: Definition and design recommen-
dations. https://www.nngroup.com/articles/

wizards/, 2017. [Online; accessed 10-September-2021].

Donald D Chamberlin. Document convergence in an in-
teractive formatting system. IBM journal of research and

development, 31(1):58–72, 1987.

Paul Chandler and John Sweller. Cognitive load theory and
the format of instruction. Cognition and instruction, 8(4):
293–332, 1991.

John J Chester and Arturo J Sánchez-Ruı́z. Building a web-
based, WYSIWYG interface cascading style sheet editor.

Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian
Friday. Experiences of developing and deploying a

https://www.nngroup.com/articles/interaction-cost-definition/
https://www.nngroup.com/articles/interaction-cost-definition/
https://www.nngroup.com/articles/wizards/
https://www.nngroup.com/articles/wizards/

66 Bibliography

context-aware tourist guide: The GUIDE Project. In Pro-

ceedings of the 6th annual international conference on Mobile

computing and networking, pages 20–31, 2000.

Mandy Ding et al. Augmented reality in museums. Muse-

ums & augmented reality–A collection of essays from the arts

management and technology laboratory, pages 1–15, 2017.

Dragos Dobrean and Laura Diosan. Model view controller
in ios mobile applications development. In SEKE, pages
547–716, 2019.

Paul M Fitts. The information capacity of the human motor
system in controlling the amplitude of movement. Jour-

nal of experimental psychology, 47(6):381, 1954.

Helen Jenny, Andreas Neumann, Bernhard Jenny, and
Lorenz Hurni. A WYSIWYG interface for user-friendly
access to geospatial data collections. In Preservation in

digital cartography, pages 221–238. Springer, 2010.

Joel Lanir, Tsvi Kuflik, Alan J Wecker, Oliviero Stock,
and Massimo Zancanaro. Examining proactiveness and
choice in a location-aware mobile museum guide. Inter-

acting with Computers, 23(5):513–524, 2011.

Soren Lauesen and Morten Borup Harning. Virtual win-
dows: Linking user tasks, data models, and interface de-
sign. IEEE software, 18(4):67, 2001.

Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser.
Research Methods in Human-Computer Interaction. Morgan
Kaufmann, 2017.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann,
1994.

Don Norman. The Design of Everyday Things: Revised and

Expanded Edition. Basic books, 2013.

Carmen Santoro, Fabio Paterno, Giulia Ricci, and Barbara
Leporini. A multimodal mobile museum guide for all.
Mobile Interaction with the Real World (MIRW 2007), pages
21–25, 2007.

Bibliography 67

Ben Shneiderman, Catherine Plaisant, Maxine S Cohen,
Steven Jacobs, Niklas Elmqvist, and Nicholas Diakopou-
los. Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Pearson, 2016.

Jacqueline Spiesser and Les Kitchen. Optimization of
HTML automatically generated by WYSIWYG pro-
grams. In Proceedings of the 13th international conference

on World Wide Web, pages 355–364, 2004.

Vassilios Vlahakis, Nikolaos Ioannidis, John Karigiannis,
Manolis Tsotros, Michael Gounaris, Didier Stricker, Tim
Gleue, Patrick Daehne, and Luis Almeida. Archeogu-
ide: An augmented reality guide for archaeological
sites. IEEE Computer Graphics and Applications, 22(5):52–
60, 2002.

Leonard Wein. Visual recognition in museum guide apps:
Do visitors want it? In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, pages 635–
638, 2014.

Max Wertheimer. Laws of organization in perceptual forms.
1938.

Nick Williams and Tim Wilkinson. Experiences in writing
a WYSIWYG editor for HTML. In Proceedings of WWW,
volume 94. Citeseer, 1994.

David Wolber, Yingfeng Su, and Yih Tsung Chiang. De-
signing dynamic web pages and persistence in the
WYSIWYG interface. In Proceedings of the 7th interna-

tional conference on Intelligent user interfaces, pages 228–
229, 2002.

Fan Yang, Nitin Gupta, Chavdar Botev, Elizabeth F
Churchill, George Levchenko, and Jayavel Shanmuga-
sundaram. WYSIWYG development of data driven web
applications. Proceedings of the VLDB Endowment, 1(1):
163–175, 2008.

Faheem Zafari, Athanasios Gkelias, and Kin K Leung.
A survey of indoor localization systems and technolo-
gies. IEEE Communications Surveys & Tutorials, 21(3):
2568–2599, 2019.

69

Index

Combine . 17, 26–27, 54–55

Keyframe . 30–32, 48–49

Outline View . 22–23, 33–34

Prototypes
- Paper . 20, 21
- Digital Mock-up . 22, 23
- Software . 39–40

Requirements . 15–16, 61–62

Website . 16, 18, 35–36
Workspace . 23–24, 45–47

Typeset October 6, 2021

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related Work
	WYSIWYG Content Editors
	Museum Guides
	Centre App

	Initial Considerations
	Stakeholders
	Centre App Data Structure
	Current Workflows and Limitations
	List of Requirements
	Platform and Code Design Decisions
	Content Editor
	Website

	Iterative User Interface Design
	Paper Prototypes
	Software Prototypes
	Exhibition Setup Assistant
	WYSIWYG Style Editing
	Multi-language Support
	Audio Player and Keyframes
	Error Handling

	Feature Complete Software Prototype

	User Study
	Design and Execution
	Task 1: Creating Exhibitions
	Task 2: Editing Style
	Task 3: Editing Exhibits
	Task 4: Audio Player Interactions
	Task 5: New Exhibits and Children
	Conclusions

	Final Product and Conclusions
	Finishing Touches
	Real-World Application and New Features
	Conclusions

	Summary and Future Work
	Summary and Contributions
	Future Work

	Full List of Requirements
	Quantifiable User Study Results
	Bibliography
	Index

