
by
Dustin Schneider

Position Tracking
of Magnetic

Dipoles Using a
Modular AMR

Sensor Grid

Master’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Dr. Martin Schmitz

Registration date: 19.05.2023
Submission date: 20.11.2023

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Declaration of Academic Integrity

___________________________ _____________________________
Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)

Student ID Number (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel
I hereby declare under penalty of perjury that I have completed the present paper/bachelor's thesis/master's thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)
erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.
Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,
dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without unauthorized assistance from third parties (in particular academic ghostwriting). I have not used any
other sources or aids than those indicated. In case that the thesis is additionally submitted in an electronic format, I declare that
the written and electronic versions are fully identical. I have not previously submitted this work, either in the same or a similar
form to an examination body.

______________________ ____________________________________
Ort, Datum/City, Date Unterschrift/Signature

*Nichtzutreffendes bitte streichen/Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.
§ 156 StGB (German Criminal Code): False Unsworn Declarations
Whosoever before a public authority competent to administer unsworn declarations (including Declarations of Academic
Integrity) falsely submits such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment for a term not exceeding three years or to a fine.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.
§ 161 StGB (German Criminal Code): False Unsworn Declarations Due to Negligence

If an individual commits one of the offenses listed in §§ 154 to 156 due to negligence, they are liable to imprisonment for a
term not exceeding year or to a fine.

The offender shall be exempt from liability if they correct their false testimony in time. The provisions of § 158 (2) and (3)
shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

______________________ ____________________________________
Ort, Datum/City, Date Unterschrift/Signature

Mönchengladbach, 20.11.2023

v

Contents

Abstract xix

Überblick xxi

Acknowledgements xxiii

Conventions xxv

1 Introduction 1

2 Related work 5

GaussSense, GaussBits and
GaussStarter [Liang et al.,
2012, 2013, 2015] 5

System Design of Smart Table
[Steurer and Srivastava, 2003] 11

A Reconfigurable Ferromagnetic In-
put Device [Hook et al., 2009] 11

vi Contents

Wireless Magnetic Position-Sensing
System Using Optimized
Pickup Coils for Higher Ac-
curacy [Hashi et al., 2009,
2011] 14

Tracking System with Five Degrees of
Freedom Using a 2D-Array
of Hall Sensors and a Per-
manent Magnet [Schlageter
et al., 2001] 15

3-Axis Magnetic Sensor Array Sys-
tem for Tracking Magnet’s
Position and Orientation
[Hu et al., 2005, 2006, 2007,
2008, 2010] 17

Our work 23

3 Hardware 25

3.1 Issues and benefits of I3C 26

3.2 Sensor . 27

3.3 Controller . 31

4 Localization algorithm 35

4.1 Problem formulation 35

4.2 Determining the step size h 37

4.2.1 Grid Search 38

4.2.2 Golden Section Search 39

4.2.3 Newton-Raphson 40

4.3 Determining the step direction 43

Contents vii

4.3.1 Gradient Descent 44

4.3.2 Gauss-Newton 44

Solution using Cholesky decomposi-
tion 45

Solution using QR decomposition . . 46

Solution using singular value decom-
position 47

4.3.3 Levenberg-Marquardt 47

Solution using Cholesky decomposi-
tion 48

Solution using QR decomposition . . 49

Solution using singular value decom-
position 50

Choice of D 50

4.4 Convergence, stop and abort criteria 51

5 Evaluation 53

5.1 Simulations 54

Hardware 54

Convergence, stop and abort criteria . 54

Algorithm 55

Simulated system 56

5.2 Optimal h search interval 59

5.3 Sensitivity to the h search interval 64

viii Contents

5.4 Parameter tuning 68

5.4.1 Results 68

5.5 Sensitivity to initial values 72

5.5.1 Successful methods 72

5.5.2 Fast methods 75

6 Comparison with related work 79

7 Conclusion 83

7.1 Summary . 83

7.2 Limitations and future work 85

A Examples of Lline(h) 87

Bibliography 89

ix

List of Figures

2.1 Intended application for GaussSense [Liang
et al., 2012] and alternative approaches for
stylus tracking: (a) visual tracking, (b) screen
overlays, (c) integration into the device and
(d) attachment of GaussSense to the back of
the device. 5

2.2 12×16 1D Hall sensor grid by Liang et al. [2012] 6

2.3 Schematic diagram of the stylus tracking
with stylus tip P , B-Field centroid O and
distance between tip position and centroid d
[Liang et al., 2012] 7

2.4 GaussClock: Multi stage rotary control,
Liang et al. [2013]. Lifting the rotary knob
shifts the control to the outer dials. 7

2.5 Intensity maps for magnets at different an-
gles [Liang et al., 2013]. The first row de-
picts the rotation of a magnet around the roll
axis. A line drawn between the centroids of
the north and south clusters is used to de-
rive the rotation angle. The second and third
rows show intensity maps of two different
magnets at different tilt angles. The length of
the green line is used to determine the tilt an-
gle. The line is drawn between two centroids
of the same cluster, that had two different
thresholds applied for discarding samples. . 8

x List of Figures

2.6 Hall sensor grid module by Liang et al.
[2015], containing sixteen WSH136 sensors
and one multiplexer 8

2.7 Modular Hall sensor grid on a breadbord for
prototyping permanent magnet tracking sys-
tems of variable sizes by Liang et al. [2015] . 9

2.8 Magnet configurations that are identifiable
by shape [Liang et al., 2013]. Each row shows
a photo of the magnet, the corresponding in-
tensity map and a schematic diagram of the
magnet with an arrow marking the roll ori-
entation. 10

2.9 A reconfigurable ferromagnetic input device by
Hook et al. [2009]. The detector comprises
64 pickup coils in a 8×8 grid, covering an
area of 10cm×10cm and can detect changes
in arbitrarily-shaped, ferromagnetic objects. . 12

2.10 The three modules that make up the re-
configurable ferromagnetic input device pre-
sented by Hook et al. [2009]. 12

2.11 The detector is equipped with a ferrofluid
bladder to create a deformable surface. The
sampled intensity map is used to deform
a surface in a sculpting application [Hook
et al., 2009]. 13

2.12 LC marker localization setup by Hashi et al.
[2011]. LC (inductor and capacitor) resonant
circuit based markers are excited by a large
coil. The alternating B-field that the markers
emit thereafter is picked up by a 5×5 array
of coils that are 10mm in diameter and 1mm
in height. 14

List of Figures xi

2.13 Effect of the distance between the initial
guess and the true magnet position on the
localization error for five different optimiza-
tion algorithms based on five 1D sensors
and undisturbed measurements by Hu et al.
[2005]. Overall, the Downhill Simplex Al-
gorithm performs the worst and Levenberg-
Marquardt the best. 18

2.14 Effect of the distance between the initial
guess and the true magnet position on
the execution time for five different opti-
mization algorithms based on five 1D sen-
sors and undisturbed measurements by Hu
et al. [2005]. Overall, Multilevel Coordi-
nate Search is the slowest and Levenberg-
Marquardt is the fastest approach. 19

2.15 Permanent magnet localization system
by Hu et al. [2006], consisting of sixteen
HMC1053 B-field sensors, instrumentation
amplifiers, analog-digital converters, a
power supply and a PC 20

2.16 Permanent magnet localization setup by Hu
et al. [2010], with 64 AMR sensors on a four-
sided cube and several modules for signal
conditioning and analog-digital conversion . 21

3.1 Overview of all the system components that
are used in development: Two debug probes,
namely an Atmel ICE (white box, top left)
and a MCU-Link (blue PCB, bottom right),
the evaluation board with the controller
(black PCB, center), a B-field sensor PCB on
the programming socket (white, bottom left)
and a sensor with 3D printed case for protec-
tion (bottom center). 25

3.2 Sensor module PCB, with a controller and
connectors on the top and the B-field sensor
on the bottom side 28

xii List of Figures

3.3 Assembled sensor module PCB, with a con-
troller and connectors on the top and the B-
field sensor on the bottom side 28

3.4 Sensor module schematic 29

3.5 Sensor module in enclosure with orientation
marker on the top and the B-field sensor on
the bottom . 30

3.6 Sensor module programming socket. The
outer pins lock the module in place while
the inner spring-loaded pins connect to pads
on the underside of the module. The pro-
gramming device can be connected to the
shrouded header with standard pin config-
uration. 30

3.7 Assembled controller evaluation board.
Pull-up resistors, a boot order change but-
ton and an RGB status LED, indicating
whether the processor is idling, busy or in
an interrupt routine are arranged on the
breadboard. 31

3.8 Controller evaluation board schematic 32

5.1 Sensor placement, units are in cm. Due to
the symmetry, the simulations only need to
sample positions inside of the box spanned
by the axes. 56

5.2 Default p samples 3D grid, 3 samples per axis 57

5.3 Detailed p samples 3D grid, 4 samples per axis 57

5.4 Default m samples 8 points on a sphere,
3 scales Vector lengths scaled according to
log10 + 1 . 57

List of Figures xiii

5.5 Detailed m samples 12 points on a sphere,
4 scales Vector lengths scaled according to
log10 + 1 . 57

5.6 p with high x resolution 3D grid, 20 samples
in x direction 58

5.7 p with high z resolution 3D grid, 20 samples
in z direction 58

5.8 p with set distances from origin 9 points on a
sphere segment, 20 scales 58

5.9 p with set distances from sensor 8 points on
a half sphere, 20 scales 58

5.10 p with 21 lines in xy direction 3D grid, 11
samples in x and y direction 58

5.11 m magnitude 8 points on a sphere, 20 scales
Vector lengths scaled according to log10 . . . 58

5.12 p distance 8 offsets on a sphere, 20 scales . . . 59

5.13 m angle Angle changed in 8 directions in 20
steps . 59

5.14 m scale Input vector is scaled in 20 steps Vec-
tor lengths scaled according to log10 + 5 . . . 59

5.15 m distance 8 offsets on a sphere, 20 scales . . 59

5.16 Histograms of optimal absolute h values in
an interval of 10−50 to 1050, as determined
by a perfect line search, for a selection of the
most successful methods of their class. The h
bins are on the x-axis and the counts on the y-
axis. The transparent blue bars are scaled by
a factor of 10 to make bins with low counts
more visible. 60

xiv List of Figures

5.17 Histograms of optimal relative h values, as
determined by a perfect line search, for a
selection of the most successful methods of
their class. The h bins are on the x-axis and
the counts on the y-axis. The transparent
blue bars are scaled by a factor of 10 to make
bins with low counts more visible. Values for
h that are below min have no impact on the
current values for p and m while scaling fac-
tors over max make the update override the
current values completely. The other lines
mark the limits that can be set to make the
method as fast as possible (Lf) or optimize
the robustness to initial values to make them
as successful as possible (Ls). 62

5.18 Optimal h distribution: Gradient Descent
optimized for speed, h limited from 3.8 ·10−6

to 3.1 · 10−2 . 63

5.19 Optimal h distribution: Gradient Descent
optimized for success, h limited from 3.0 ·
10−8 to 7.8 · 10−3 63

5.20 Optimal h distribution: Gauss-Newton with
QR decomposition optimized for speed, h
limited from 2.4 · 10−6 to 2.0 · 100 64

5.21 Optimal h distribution: Gauss-Newton with
QR Decomposition optimized for success, h
limited from 2.4 · 10−6 to 2.0 · 100 64

5.22 Optimal h distribution: Levenberg-
Marquardt with QR decomposition and
diagonal damping optimized for success: h
limited from 3.1 · 10−5 to 2.0 · 100 64

5.23 Successful Gradient Descent h limits → con-
vergence ratio linear color gradient 65

5.24 Fast Gradient Descent h limits → expected
computation time logarithmic color gradient 65

List of Figures xv

5.25 Fast Gradient Descent h limits → average
comp. time on success linear color gradient . 65

5.26 Fast Gradient Descent h limits → average
comp. time on abortion linear color gradient 65

5.27 Successful Gauss-Newton h limits → success
rate linear color gradient 66

5.28 Fast Gauss-Newton h limits → expected
computation time logarithmic color gradient 66

5.29 Fast Gauss-Newton h limits → average
comp. time on success linear color gradient . 66

5.30 Fast Gauss-Newton h limits → average
comp. time on abortion linear color gradient 66

5.31 Suc. Levenberg-Marquardt h limits → suc-
cess rate linear color gradient 67

5.32 Fast Levenberg-Marquardt h limits → ex-
pected computation time logarithmic color
gradient . 67

5.33 Fast Levenberg-Marquardt h limits → aver-
age comp. time on success linear color gradient 67

5.34 Fast Levenberg-Marquardt h limits → aver-
age comp. time on abortion linear color gra-
dient . 67

5.35 Baseline Gradient Descent, convergence ratio 73

5.36 Baseline Gauss-Newton, convergence ratio . 73

5.37 Baseline Levenberg-Marquardt, conver-
gence ratio . 73

5.38 Successful Gradient Descent, convergence
ratio . 74

5.39 Successful Gauss-Newton, convergence ratio 74

xvi List of Figures

5.40 Successful Levenberg-Marquardt, conver-
gence ratio . 74

5.41 Baseline Gradient Descent, expected compu-
tation time . 76

5.42 Baseline Gauss-Newton, expected computa-
tion time . 76

5.43 Baseline Levenberg-Marquardt, expected
computation time 76

5.44 Fast Gradient Descent, expected computa-
tion time in ms 77

5.45 Fast Gauss-Newton, expected computation
time in ms . 77

5.46 Fast Levenberg-Marquardt, expected com-
putation time in ms 77

A.1 Example of Lline(h), no minimum 87

A.2 Example of Lline(h), one minimum 87

A.3 Example of Lline(h), two minima 88

A.4 Example of Lline(h), three minima 88

A.5 Example of Lline(h), four minima 88

A.6 Example of Lline(h), five minima 88

xvii

List of Tables

2.1 Comparison of other occlusion-free and pre-
dominantly B-field based localization sys-
tems. The dimensions in the coverage column
are given as x×y×z, with z being height. All
of the systems with 2D sensor arrangements
can be scaled in x and y directions, so the
maximum sensing range z is the most inter-
esting. It has to be noted that the sensing
ranges have been determined under differ-
ent thresholds and conditions, so the num-
bers are not directly comparable. They do,
however, give a rough impression of what
can be expected of the systems. Our sen-
sor network is comparatively sparse and the
sensors can be placed in arbitrary locations
in 3D. 2D sensor configurations are espe-
cially useful in practice though, for installing
the system under unused surfaces, so getting
the most out of this kind of configuration
should definitely be a focus for our work. We
include our work in the table, but the final
assembly and testing are out of scope, so the
sensing range remains to be determined. . . . 22

5.1 Average simulation results. Simulated as de-
scribed in Section 5.1 with about 9.4 million
samples per dataset. Top: methods without
line search, middle: line search optimized
for success, bottom: methods optimized for
speed. 70

xviii List of Tables

6.1 B-field sensor specifications 81

xix

Abstract

Several object tracking systems have been proposed for a variety of purposes, in-
cluding rotational speed sensors for fabrication machines, avalanche beacons that
can be used to track down buried skiers, wearable motion capturing systems, wire-
less capsule endoscopy, and many more. In this work, we devise a permanent
magnet tracking system that is optimized for human computer interaction (HCI)
purposes. The system is based on anisotropic magnetoresistive (AMR) sensors on
tiny modules that can be composed to form networks of 2 to over 100 sensors,
depending on the requirements of the application. By employing the I3C bus, we
achieve low latencies and high sampling rates of up to 1kHz. In addition to the sen-
sors, only a controller is needed, making the hardware sufficiently compact to be
installable in a variety of existing environments. For the localization, we formulate
a least-squares problem that we base on the ideal dipole B-field equations as an ap-
proximation to the field of a real magnet. We test gradient descent, Gauss-Newton
and Levenberg-Marquardt to solve the resulting over-determined non-linear equa-
tion system. To improve their performance, we combine these methods with a
line search, for which we evaluate three different methods: Grid Search, Golden
Section Search and Newton-Raphson. By running several simulations, we found
that Gauss-Newton, solved with the Cholesky decomposition and combined with
a line search consisting of a coarse Grid Search followed by a Golden Section Search,
leads to the fastest expected computation time of just 212µs for a position, orienta-
tion and magnetization estimation. For initial positions that are within 3cm of the
actual position, the algorithm is even faster, needing only less than 100µs for a lo-
calization. This is at least two orders of magnitude faster than the commonly used
approach based on Levenberg-Marquardt as a trust-region method, which makes
it better suited to run in embedded systems.

xx Abstract

xxi

Überblick

Viele Positions- und Orientierungsbestimmungssysteme existieren für eine Fülle
von Anwendungen, angefangen bei Winkel- und Drehzahlmesssystemen in Ferti-
gungsmaschinen, über Lawinenverschüttetensuchgeräte mit denen über größere
Reichweiten verschüttete Menschen geortet werden können, bis hin zu tragba-
ren Bewegungserfassungssystemen. In dieser Arbeit konzipieren wir ein System
für die Lokalisierung von Permanentmagneten, das für Anwendungen im Bereich
der Mensch-Computer-Interaktion optimiert ist. Das System basiert auf anisotro-
pen magnetoresistiven Sensoren, die als kleine Module je nach Anwendungsfall
zu Netzwerken von 2 bis über 100 Sensoren kombiniert werden können. Durch
Verwendung des I3C Busses erreicht unser System niedrige Latenzen und ho-
he Messraten von bis zu 1 kHz. Neben den Sensoren ist sonst nur ein Control-
ler vonnöten, wodurch die Hardware hinreichend platzsparend ist, um in einer
Vielzahl von bestehenden Umgebungen eingesetzt werden zu können. Zur Loka-
lisierung stellen wir eine quadratische Verlustfunktion auf Basis der B-Feld Glei-
chung magnetischer Dipole auf, die uns als Näherung für das tatsächliche Feld
eines Permanentmagneten dient. Zur Lösung des resultierenden überbestimmten,
nicht linearen Gleichungssystems testen wir die Gradienten-, Gauß-Newton- und
Levenberg-Marquardt-Verfahren. Zur Verbesserung kombinieren wir diese Metho-
den zusätzlich mit einer Liniensuche, für die wir drei weitere Methoden evaluieren:
die Rastersuche, das Verfahren des Goldenen Schnittes und das Newton-Raphson-
Verfahren. Unsere Simulationen ergeben, dass das Gauß-Newton-Verfahren, gelöst
mithilfe der Cholesky-Zerlegung und in Kombination mit einer Liniensuche basie-
rend auf einer Rastersuche gefolgt vom Goldenen-Schnitt-Verfahren, die Position,
Orientierung und Magnetisierung eines Dipols in durchschnittlich nur 212µs be-
stimmen kann. Wenn die geschätzte Startposition nur bis zu 3 cm von der echten
Position des Dipols entfernt ist, vollendet das Verfahren Lokalisierungen sogar in
unter 100µs. Das ist mindstens zwei Größenordnungen schneller als die verbreite-
te Lösung mittels Levenberg-Marquardt als Trust-Region-Verfahren und macht die
Lokalisierungsprozedur geeigneter für die Ausführung in eingebetteten Systemen.

xxiii

Acknowledgements

I would like to thank Prof. Dr. Jan Borchers and Dr. Martin Schmitz for exam-
ining my thesis. Also, I want to thank my supervisor René Schäfer for his time
throughout my thesis.

I would especially like to thank my family and friends who have supported me
during my Master’s thesis, in particular Jani Taxidis and Laura Drescher-Manaa.

xxv

Conventions

Variables

Name Structure Description Eq.
k N Generic counter
n N≥2 Number of sensors
r R3 Position relative to magnet
p R3 Magnet position
m R3 Mag. orientation and strength/dipole moment
p̂ R3 Position update vector
m̂ R3 Dipole moment update vector
P R3 P = p− hp̂
M R3 M = m− hm̂
h R Update scale for iterative methods
psk R3 Position of sensor k
Bsk R3 B-field measurement of sensor k
Bs R3n Column vector of all sensor measurements 4.4
pt R3 True magnet position in simulations
mt R3 True dipole moment in simulations
pi R3 Initial magnet position in simulations
mi R3 Initial dipole moment in simulations

Functions

Name Structure Description Eq.
Bi(p,m) R6 → R3 B-field at the position of sensor k 4.2
B(p,m) R6 → R3n B-fields at all sensors 4.3
R(p,m) R6 → R3n Residual vector 4.5
L(p,m) R6 → R Loss function 4.6
J(p,m) R6 → R3n×6 Jacobian of B 4.20
d(a, b) R6 → R Euclidean distance between two points

xxvi Conventions

In this work, the phrase localization is used to refer to the
estimation of both the position and the orientation of a
marker. Markers are localizable entities that can be attached
to or integrated into objects to make them trackable.

1

Chapter 1

Introduction

The ability to estimate the position or orientation of mag-
netic dipoles is essential for many applications, including
rotational speed sensors in fabrication machines, avalanche
beacons that can be used to track down buried skiers
[Pinies et al., 2006] and tracking medical apparatus inside
of patients [Hu et al., 2010]. Accordingly, research into
this problem has been conducted by scientists of several
disciplines: Attempts by McFee and Das [1981] to localize
dipoles by solving the B-field equations, for the purpose of
detecting buried ordnances date back to 1981. In the field
of human computer interaction (HCI), Liang et al. [2012,
2013, 2015] present several possible applications involving
different objects with embedded permanent magnets and a
dense sensor grid built out of 1D Hall sensors. Steurer and
Srivastava [2003] use a large grid of Hall switches to build a
smart table, which is capable of locating tiles that have been
marked with magnetic tape. Their approach is intended to
be used for locating tokens in board games. Hook et al.
[2009] present a system based on a grid of pickup coils that
can detect ferromagnetic objects in its vicinity. Combined
with a ferrofluid bladder, this can be used to create a mold-
able touchpad, which might be useful for sculpting applica-
tions. Optical tracking is a common alternative to magnetic
tracking, but it is only employable in applications that offer
sufficient space for cameras, and in which the markers are
guaranteed to stay in line of sight, making it unapplicable
for most aforementioned use cases.

The localization approaches of the works that we cover
can be divided into two categories: graphical and equation-
system-based. The HCI systems tend to employ large grids
of sensors, compile the measurements into images and per-

2 1 Introduction

form the position and orientation estimation of the mark-
ers by graphical means [Steurer and Srivastava, 2003, Liang
et al., 2012, 2013, 2015] or not at all [Hook et al., 2009]. All
other approaches use the equations, that describe B-fields,
to set up approximate linear equation systems or non-linear
minimization problems, and solve for the dipole position
and orientation [McFee and Das, 1981, Schlageter et al.,
2001, Hu et al., 2005, 2007, 2008, Hashi et al., 2011, Lu et al.,
2019].

Most approaches use passive markers [Hashi et al., 2011],
which are usually permanent magnets [Steurer and Srivas-
tava, 2003, Hu et al., 2006, 2010, Han et al., 2009, Liang et al.,
2012, 2013, 2015], so that the markers can move freely. Us-
ing the sensors as active markers is also possible, especially
for wearable motion capturing devices, where the cable
connections do not get in the way [Fernandez et al., 2020].
For human motion tracking, the B-field based approach can
also be combined with inertial measurement units (IMU)
as additional sources of data [Pinies et al., 2006, Fernandez
et al., 2020].

Some related approaches use coils to detect the B-fields
[Hook et al., 2009], especially those that need to cover large
distances [McFee and Das, 1981, Pinies et al., 2006] or have
sufficient space available in the targeted application [Hashi
et al., 2011]. Since coils can only detect changes in mag-
netic flux, these systems usually rely on alternating B-fields
[Pinies et al., 2006, Hashi et al., 2011] or coils as fluxgate
sensors [McFee and Das, 1981] to be able to localize dipoles
that are not moving. Alternating fields also enable the iden-
tification of different markers via their frequency, but re-
quires active markers or external excitation sources [Hashi
et al., 2011, Fernandez et al., 2020], which require a signifi-
cant amount of energy and space. This is why systems that
aim for a high degree of integration favor miniaturizable
sensors, such as Hall [Schlageter et al., 2001, Liang et al.,
2012, 2013, 2015] or anisotropic magnetoresistance (AMR)
sensors [Hu et al., 2006, 2010, Han et al., 2009].

Even though a lot of research has been conducted around
magnetic tracking, all previously mentioned HCI systems
use similar methods and come with the same drawbacks:
the requirement to arrange sensors in a dense Cartesian
grid, and the accordingly high cost, low sensing ranges and
limitations in the orientation estimation. To alleviate this,
we attempt to devise an affordable real-time permanent
magnet tracking system that relies on fewer, fully modu-
lar and more sensitive sensors, is easy to set up and use,

3

and has no limitations in the position or orientation estima-
tions. This is something that the non-HCI systems already
offer, but those usually come with high latencies and low
localization rates, or large space and power requirements.
We aim to create a tracking system that localizes the marker
at high rates with low latencies by taking a closer look at
some numerical methods and by making appropriate de-
sign choices for the hardware. We also try to minimize the
space and power requirements, to make our system deploy-
able in a variety of scenarios. The target application is, but
should not be limited to, 3D gesture input.

In Chapter 2, we take a closer look at the related sys-
tems, with a general overview in Table 2.1. In Chap-
ter 3, we discuss the development hardware, which we de-
signed around the AMR sensor that was chosen in a pre-
vious work by Drescher-Manaa [2022]. Chapter 4 deals
with the math behind our localization procedure and de-
scribes the methods that we evaluate. The results of sev-
eral simulations for Grid Search, Golden Section Search,
Newton-Raphson, Gradient Descent, Gauss-Newton and
Levenberg-Marquardt are presented and analyzed in Chap-
ter 5. In Chapter 6, we compare our progress to the re-
lated works. Finally, we give a summary and outline the
next steps that need to be taken for further development in
Chapter 7.

5

Chapter 2

Related work

In the following, we will present six related works in detail,
all of which cover complete marker localization systems.
The first three of those perform the localization by graph-
ical means, while the last three construct and solve non-
linear least-squares problems based on the equation that
describes the B-field of an ideal dipole. For an overview
of the related systems, refer to Table 2.1.

GaussSense, GaussBits and GaussStarter [Liang et al.,
2012, 2013, 2015]

Figure 2.1: Intended application for GaussSense [Liang et al.,
2012] and alternative approaches for stylus tracking: (a) visual
tracking, (b) screen overlays, (c) integration into the device and
(d) attachment of GaussSense to the back of the device.

6 2 Related work

In ”GaussSense”, Liang et al. [2012] retrofit devices that
have capacitive touchscreens with stylus input capability
by attaching a 2D grid of 1D Hall sensors to the back of the
device, as indicated in Figure 2.1.

The stylus is equipped with a permanent magnet whoseA dense grid of Hall
sensors is used in

conjunction with
permanent magnets

as markers.

field is measured to determine its tilt and pressure on the
screen. The sensor array is made up of 12×16 Hall sen-
sors with part number WSH138 in SOT-23 packages on a
60mm×80mm printed circuit board (PCB). The analog out-
put voltages of the sensors are switched by 16:1 multiplex-
ers, sampled and then transferred to a PC over USB by a
microcontroller. The circuit board is shown in Figure 2.2.

Figure 2.2: 12×16 1D Hall sensor grid by Liang et al. [2012]

For the localization of the magnet, the first preprocessingThe sampled values
are corrected and

transformed into an
intensity map.

step is offset correction. The offsets in the measurements
are calculated once at startup with no magnet present as the
deviation of each sensor value from the mean value of the
array and are subsequently subtracted from all measure-
ments. Secondly, a non-linear transformation is applied
to each individual measurement to obtain intensity values
that correspond more closely to the distance between the
magnet and the sensor grid. The intensity values are thenThe tip position is

taken from the
touchscreen, the

pressure and tilt from
the intensity map and

the tip position.

assembled into an image and upsampled for a finer reso-
lution. For the localization, lower intensities are discarded
until the resulting values no longer touch the boundary of
the image. The distance between the centroid of the remain-
ing values and the stylus tip position, as determined by the
touch screen, is then used to determine the tilt of the sty-
lus, while the maximum intensity value is interpreted as
the stylus pressure (Figure 2.3).

In their work named ”GaussBits”, Liang et al. [2013] buildGaussSense is
improved in

GaussBits to support
multi-object tracking
and larger detection

distances.

7

Figure 2.3: Schematic diagram of the stylus tracking with stylus
tip P , B-Field centroid O and distance between tip position and
centroid d [Liang et al., 2012]

upon their earlier work, GaussSense, and explore possibili-
ties to enhance graphical user interfaces with trackable real-
world objects. Improvements include allowing detection of
multiple objects and increased distance from the sensor net-
work at which hovering objects can be localized. The goal
is to extend the limited 2D user interface design space of
touch displays to the 3D near-surface space. One example
named GaussClock is shown in Figure 2.4.

Figure 2.4: GaussClock: Multi stage rotary control, Liang et al.
[2013]. Lifting the rotary knob shifts the control to the outer dials.

As in GaussSense, objects are being tracked using the static Compared to
GaussSense, the
sensor area and
number has been
quadrupled and the
B-field range was
extended to include
the S-pole.

magnetic field that is emitted by a permanent magnet. The
sensor technology remains the same, but four of the boards
(Figure 2.2) have been combined to extend the measured
area to cover larger screens. In contrast to the predeces-
sor, which only used the N-component of the B-field in z-
direction, the whole measurement range is used in Gauss-
Bits to allow for a more versatile localization procedure.

The position and orientation of the magnets are again esti-
mated via cluster centroid positions and maximum inten-
sities. The intensity is used to estimate the distance of the The localization is

based on clustering
and graphical
methods.

tracked object from the sensor grid, while a line drawn be-
tween the centroids of two opposite pole activation clus-
ters is used to determine the roll angle. The center point of
that line is assumed to be the position of the magnet. For
tiltable objects, the centroids are calculated before and after
non-maximum suppression and the line is drawn between
these two centroids of the same cluster. The tilt angle is

8 2 Related work

then deduced from the length of the line. Examples of the
intensity maps are given in Figure 2.5.

Figure 2.5: Intensity maps for magnets at different angles [Liang
et al., 2013]. The first row depicts the rotation of a magnet around
the roll axis. A line drawn between the centroids of the north and
south clusters is used to derive the rotation angle. The second
and third rows show intensity maps of two different magnets at
different tilt angles. The length of the green line is used to de-
termine the tilt angle. The line is drawn between two centroids
of the same cluster, that had two different thresholds applied for
discarding samples.

To make prototyping with this system easier, Liang et al.
[2015] published ”GaussStarter”, in which the authors di-
vide the sensor array into 4×4 grids (Figure 2.6). These can
then be combined on a breadboard to construct sensor grids
of varying sizes (Figure 2.7).

Figure 2.6: Hall sensor grid module by Liang et al. [2015], con-
taining sixteen WSH136 sensors and one multiplexer

Assessment: Each of the individual Hall sensors typicallyThe power
requirement of the

prototype is very
large, which is
problematic in

portable applications.

draws over 3mA of supply current at 5V. For the 768 sen-
sors, this adds up to at least 2.3A, or a power of 11.5W, not
accounting for the multiplexers and microcontrollers. This
exceeds the 2.5W power delivery capabilities of USB 2.0 by
far [Com, 2000] and rivals the internal power consumption

9

(a) Single module (b) Hall sensor grid

Figure 2.7: Modular Hall sensor grid on a breadbord for proto-
typing permanent magnet tracking systems of variable sizes by
Liang et al. [2015]

of connected mobile devices, draining their internal batter-
ies and making the system less portable. This can be fixed
easily, however, by multiplexing the power supply of the
sensors, only enabling those that are currently being sam-
pled. As such, this is a problem of the prototype, not a prob-
lem of the working principle itself.

The output voltage of the WSH138 sensor is roughly linear The sampling
resolution is low,
resulting in a short
maximum tracking
distance.

for fields from -200 to 200 Gauss and is sampled with 9-Bit
precision. Whether this sampling depth covers just the lin-
ear range of the sensor or the full range is not mentioned by
the authors. This leads to a resolution of 1356mG/lsb in the
worst and 781mG/lsb in the best case. For most locations
inside of the measurement volume, the measured B-field
values will be rather low in intensity, as the B-field inten-
sities decrease by the inverse of the distance cubed [Liang
et al., 2012]. In conjunction with the low resolution, this
leads to a very limited distance at which the localization
can be performed successfully. In addition, the graphical
algorithm does not make use of the extreme redundancy
provided by the large amount of sensors and failed in the
tests of the authors at distances between 17mm to 44mm,
depending on the magnet. This could be improved on the The full potential of

the sensors is not
harnessed by the
electrical system.

electrical side by using higher resolution A/D converters,
preamplifiers and filters. The output capacitors that are
recommended in the WSH138 datasheet are missing com-
pletely, additionally worsening the signal-to-noise ratio.

Additional downsides of the proposed algorithm are that The orientation
estimation has
several limitations.

firstly, a calibration is necessary for each magnet shape and
strength for an accurate tilt detection, secondly, only 360° of
the roll angle or up to 45° tilt can be detected due to ambi-

10 2 Related work

guities in the intensity map, thirdly, the intensity map up-
sampling is costly and does not increase the information
content of the data and lastly, the tracked objects must not
get too close to each other, or they will either stick to each
other or be grouped into one object by the algorithm, de-
pending on the polarity of their fields.

An advantage of the algorithm compared to all other re-The graphical
algorithm handles

oddly shaped
magnets very well.

lated works presented hereafter is that oddly shaped mag-
nets are not only unproblematic, but even beneficial. Other
localization techniques that are instead based on the dipole
equations usually assume the magnetic dipoles to be point
sources without any volume, and in these, deviations from
that assumption are one of the main sources of error. In
GaussBits on the other hand, unique field shapes are used
for identification, as seen in Figure 2.8.

Figure 2.8: Magnet configurations that are identifiable by shape
[Liang et al., 2013]. Each row shows a photo of the magnet,
the corresponding intensity map and a schematic diagram of the
magnet with an arrow marking the roll orientation.

Lastly, another issue of the system is cost. At the time ofThe large Hall sensor
network is very

expensive.
this writing, the most inexpensive Hall sensors cost about
10 cents a piece when bought on a whole reel at a distribu-
tor. Thus, each such Hall sensor array costs at least 80€ in
parts, making this approach impractical compared to other
related works.

11

System Design of Smart Table [Steurer and Srivastava,
2003]

In an earlier work, Steurer and Srivastava [2003] describe Hall switches are
used as sensors.a similar system to GaussSense, in which object positions

and identities are tracked on the surface of a table. Two ap-
proaches are tested separately, with the second one being
of interest here. The first is based on small metal contact
pads on the surface of the table, the second one is based
on 9600 Hall switches distributed over 24 PCBs that can be
mounted underneath the table. The authors are aware of
the prohibitively high cost of such a system, which is likely
the reason for them preferring Hall switches over linear
Hall sensors. The tracked objects are equipped with mul- Trackable objects are

marked with several
pieces of magnetic
tape in different
patterns.

tiple pieces of magnetic tape in different shapes on their
bottom side. A triangle, formed by three bits of tape in the
corners, is used for localization. A second pattern is used
for identification, where the presence or absence of each bit
of tape is recorded as one bit of information. The localiza-
tion algorithm is somewhat similar to GaussBits: An acti-
vation map is sampled over the whole surface and, based
on that, the positions of the magnetic pads are determined
by finding clusters of up to four activations and averaging
their positions. After that, the pads are assigned to objects
and the object positions and orientations are deduced from
the pad positions that form the triangle.

Assessment: As mentioned before, this system is very ex- The smart table is
very expensive and
the measurement
data is very limited.

pensive, as it consists of a high number of parts. Since Hall
switches only produce one bit of data per piece, the posi-
tion estimation is limited to two dimensions due to the low
information content of the data. In addition, objects need
to be rather large, with diameters in the order of 10cm, for The tracked objects

must be large.their pads to be placed at a sufficiently large distance, so
that a satisfactory angular precision can be achieved by the
localization algorithm.

A Reconfigurable Ferromagnetic Input Device [Hook
et al., 2009]

Another intensity map based approach has been published Coils with integrated
magnets are used as
sensors, so that
trackable objects
only need to be
ferromagnetic.

by Hook et al. [2009], with the goal of creating a versatile
input device for multiple ferromagnetic objects (Figure 2.9).

Contrary to the markers that are used in other related
works, the tracked objects do not emit measurable fields

12 2 Related work

(a) The detector (b) Detectable ferromagnetic objects

Figure 2.9: A reconfigurable ferromagnetic input device by Hook
et al. [2009]. The detector comprises 64 pickup coils in a 8×8
grid, covering an area of 10cm×10cm and can detect changes in
arbitrarily-shaped, ferromagnetic objects.

on their own, so this is done externally with permanent
magnets. Additionally, coils are used instead of traditional
sensors to pick up changes in the B-field. With this setup,
the magnets can be placed inside of the coils (Figure 2.11a).
When ferromagnetic objects come close to the magnets, the
field will be deflected. In turn, the changing B-field in-
duces a voltage in the coil around the magnet, which is then
amplified by an instrumentation amplifier, sampled by an
ADC with 12 bit resolution at 55Hz and finally transmitted
to a PC. The corresponding PCBs can be seen in Figure 2.10.

(a) Coil grid (b) Amplifiers (c) Digital interface

Figure 2.10: The three modules that make up the reconfigurable
ferromagnetic input device presented by Hook et al. [2009].

Like in earlier works, the intensity map is created by cor-
recting offsets and ignoring measurements under a certain
threshold followed by upsampling. After that, no addi-The intensity map is

the output of the
system.

tional steps are performed. The intensity map is the input
for applications on the PC. An example for a sculpting ap-
plication is depicted in Figure 2.11.

Assessment: Ferromagnetic objects have the advantage
that they do not attract or repulse each other compared to
ones containing permanent magnets. They are also cheaper

13

(a) Working principle when equipped with a ferrofluid bladder

(b) Interaction (c) Intensity map (d) Sculpting result

Figure 2.11: The detector is equipped with a ferrofluid bladder to
create a deformable surface. The sampled intensity map is used
to deform a surface in a sculpting application [Hook et al., 2009].

and ubiquitous compared to rare-earth magnets. The lat-
ter advantage is voided by the fact that rare-earth magnets
are still needed in their work, just in the detector instead
of the objects. The choice of coils as sensors has several
drawbacks as well. Coils are large and the required spacing
leads to a low spacial resolution. This is just obscured and
not fixed by the upsampling step. Coils are heavy, so the The pickup coils are

large, heavy and
expensive.

weight reduces the portability of the system. The copper
wire required to wind the coils is expensive, comparable to
the cost of a cheap Hall sensor at the time of this writing.
Lastly, coils only detect changes in the B-field. To obtain
the state of the ferromagnetic object at a point in time, in-
tegration is necessary, which is prone to drift. When the Only changes in the

state of the system
can be measured
with coils and
permanent B-fields.

ferrofluid bladder in Figure 2.11b is compressed a second
time, close to the dent that was left by the first interaction,
the original dent would be evened out, leading to a second
registered activation that was not intended by the current
interaction. These problems are neither mentioned nor ad-
dressed by the authors.

14 2 Related work

Wireless Magnetic Position-Sensing System Using Op-
timized Pickup Coils for Higher Accuracy [Hashi et al.,
2009, 2011]

Hashi et al. [2011] proposed a tracking system for medical
purposes, which is also based on pickup coils. The system
is shown in Figure 2.12.

Figure 2.12: LC marker localization setup by Hashi et al. [2011].
LC (inductor and capacitor) resonant circuit based markers are
excited by a large coil. The alternating B-field that the markers
emit thereafter is picked up by a 5×5 array of coils that are 10mm
in diameter and 1mm in height.

At 1mm height, the coils used in this system are muchThe system uses
alternating B-fields
that are emitted by

passive markers
after excitation with a

large coil.

shorter than the ones used by Hook et al. [2009]. The excita-
tion field is generated by a large coil instead of permanent
magnets, and the markers are small LC oscillators, built out
of a small capacitor and a coil wound around a ferrite core,
which is just 3mm in diameter and 10mm long.

To start a measurement, the marker is excited by the ex-
citation coil and the voltages at the pickup coils are sam-
pled. The contribution of the excitation coil field has been
measured before without a marker and is removed from the
measurements, similar to the offset correction in previously
mentioned works. For the localization, the field emitted by
the marker is assumed to be close to an ideal dipole. TheThe localization is

done by solving an
optimization problem
based on the dipole

equations with
Gauss-Newton.

dipole equation is then used to construct a non-linear least
squares problem, with six unknowns for the dipole position
and orientation, where there is an equation for each pickup

15

coil, resulting in 25 equations in total. This is the general ap-
proach that all the following works presented in this chap-
ter pursue as well. The authors then use the Gauss-Newton
method to find the marker position and orientation that
minimize the loss of the over-determined equation system.

Assessment: LC resonant markers have the advantage over No permanent
magnets and thus no
rare materials are
needed.

permanent magnets that they do not require rare-earth met-
als. They also allow for identification and multi-object
tracking, since they can be tuned to different frequencies,
which are mathematically orthogonal to each other and can
thus be separated from each other in the sampled data. Un-
fortunately though, this is not covered by the paper. The
alternating fields also fix the shortcoming of the ferromag-
netic input device by Hook et al., which can only detect
changes in the static fields and can thus never measure the
current state of the objects. With the emitted field being al-
ternating, the current absolute position of the marker can
always be derived from the measured data.

A disadvantage of the electrical design of the tracking sys- High and potentially
dangerous voltages
are needed for the
excitation of the
markers.

tem is the high exciting peak voltage of 84V, which is not
considered safe to touch and would be somewhat difficult
to produce from low battery voltages in portable systems.
It needs to be mentioned though, that the authors never in-
tended this system to be portable. The waveform, that is
used to excite the markers, is not given in the paper nor in
its predecessor (Hashi et al. [2009]). In case a step or rectan- The excitation coil

might cause
electromagnetic
interference with
other devices.

gle impulse is used, the exciting coils will act as an antenna
and transmit signals with a wide band of frequencies that
might cause interference with other devices.

Unfortunately, no benchmarks or convergence rates of the
numerical algorithm are given, apart from the general
method and the accuracy of the localization results. The lat-
ter is out of the scope of our work, and thus not discussed
here in more detail.

Tracking System with Five Degrees of Freedom Using
a 2D-Array of Hall Sensors and a Permanent Magnet
[Schlageter et al., 2001]

An influential early work that studies the suitability of a A combination of Hall
sensors and
permanent magnet
markers is used.

2D grid of Hall sensors for tracking small rare-earth per-
manent magnets was published by Schlageter et al. [2001].
The authors analyze the physical limitations and tradeoffs

16 2 Related work

in terms of sampling rate, sensing distance and localization
accuracy of such systems in great detail. They do this by
building and measuring a highly optimized real system, as
well as by simulating several parameters that they deem
too difficult to measure.

1D Hall sensors are arranged in a 4×4 grid, with half ofThe electrical system
is highly optimized to

achieve the best
signal-to-noise ratio.

them oriented in x- and the other half in y-direction. The
Hall sensors have been designed and built by Blanchard
et al. in an earlier work. Special features are a cylindri-
cal structure of the sensing element coupled with two inte-
grated flux-concentrators, which are thin sheets of a highly
permeable ferromagnetic material that divert some of the
external field lines into the sensing element, resulting in a
better detectivity than all of the commercially available sen-
sors at that time. The differential sensor outputs are then
amplified with a low noise instrumentation amplifier that
was built for this specific purpose as well. After that, the
offset is subtracted from the signal and it is put through a
low-pass filter for noise reduction. It is then sampled with
16 bit at up to 50Hz and transmitted to a PC for further
processing.

The localization is set up as a least-squares problemThe localization is
done by solving an

optimization problem
based on the dipole

equations with
Levenberg-
Marquardt.

over five variables (3D position and 2D spherical angles)
and solved with Levenberg-Marquardt as a trust region
method. No additional information is given on implemen-
tation details or the performance and convergence proper-
ties of the algorithm.

Assessment: The electrical system is very well built, in con-
trast to many of the previously described systems, and is
likely close to what is physically possible with the technol-
ogy that is being used. With a different sensor technology, a
higher sensing distance might however be achievable than
the reported 14cm. According to the authors, only mea-
suring the x- and y-components of the B-field leads to a
decreased localization accuracy and sensing distance when
the dipole is oriented vertically. The system was likely builtMore suitable

sensors based on
other effects have
become available.

this way, owed to the fact that their sensor design is not well
suited to be placed upright. Since this paper has been pub-
lished, 3D sensing structures have been developed and 3D
sensors have become commercially available, so utilizing
them might be a way to achieve even better results.

We found that the reliability of Levenberg-Marquardt as a
trust region method for this problem depends on the start-
ing parameters (Section 5.5). This is unfortunately not ex-

17

amined in the paper.

3-Axis Magnetic Sensor Array System for Tracking Mag-
net’s Position and Orientation [Hu et al., 2005, 2006, 2007,
2008, 2010]

Inspired by Schlageter et al., Hu et al. [2005] try to create Five methods to
solve the
optimization problem
based on the dipole
equations are tested
in simulations.

a wireless capsule endoscopy system that can measure the
position of a capsule in the human gastrointestinal tract and
actuate its movement to guide it through unimportant ar-
eas more quickly. Due to the lack of implementation details
on the localization procedure in related works, Hu et al. de-
cide to evaluate several different methods in terms of their
localization accuracy and execution time.

The equation system is based on the non-linear dipole
equation with six variables, namely the 3D position and 3D
dipole moment of the marker. The authors choose to nor-
malize the dipole moment by adding the equation ∥m∥ = 1
to the system, discarding its length and with it the magneti-
zation strength, effectively reducing the 3D dipole moment
vector to the 2D orientation of the marker. The magnetiza-
tion of the marker is instead included as a constant in their
formulation of the dipole equation to compensate for that.

Five different optimization algorithms are tested: Powell’s The influence of the
distance between the
initial guess and the
localization result is
examined in terms of
position and
orientation errors.

Algorithm, Downhill Simplex Algorithm, DIRECT, Multi-
level Coordinate Search and Levenberg-Marquardt. The
true position of the magnet for the first set of simulations
is chosen as (10cm, 10cm, 12cm) and five 1D (x direction)
B-field sensors are positioned in a cross pattern at 10cm dis-
tance between each other. This setup is used to explore the
effects of the distance between the initial guess of the mag-
net position and its true position on the localization error
and execution time for each method. The initial and true
values for the orientations being used in the simulations
are not given and neither is the amount of samples nor the
sample distribution. The errors are measured as the Eu-
clidean distances between the true and calculated values.
The results are plotted in Figures 2.13 to 2.14.

The positioning error of Powell’s Algorithm is unaccept- Multilevel Coordinate
Search and
Levenberg-
Marquardt produce
essentially perfect
results.

ably high over the whole range, the Downhill Simplex Al-
gorithm yields good results up to a distance of about 3cm,
DIRECT is acceptable up to 15cm, and both Multilevel Co-
ordinate Search and Levenberg-Marquardt find the exact
true position over the whole range of initial values (Fig-

18 2 Related work

(a) Position error (b) Orientation error

Figure 2.13: Effect of the distance between the initial guess and the true magnet position
on the localization error for five different optimization algorithms based on five 1D sen-
sors and undisturbed measurements by Hu et al. [2005]. Overall, the Downhill Simplex
Algorithm performs the worst and Levenberg-Marquardt the best.

ure 2.13a). The results in regard to the orientation error are
virtually identical (Figure 2.13b).

The fastest algorithm is Levenberg-Marquardt with an av-Levenberg-
Marquardt is the

fastest algorithm by
far.

erage execution time of 0.11s, followed by the Down-
hill Simplex Algorithm at 0.29s, Powell’s Algorithm at
0.37s, DIRECT 0.50s and the slowest is Multilevel Coordi-
nate Search with an average execution time of 0.69s (Fig-
ure 2.14). Based on these results, Levenberg-Marquardt is
the obvious choice, being the fastest, as well as the most
precise algorithm of all the ones that are tested.

Assessment: We found that many different aspects deter-The simulation
conditions are not

described thoroughly,
considerably limiting

the significance of
the results.

mine the performance of the Levenberg-Marquardt algo-
rithm, including the distances between the initial values
and the true values, but also the absolute values themselves
and their position relative to the sensor grid (Section 5.5).
For example, initial values of zero lead to many zero entries
in the gradient of the objective function, which impedes the
convergence of gradient-based methods. Some true posi-
tions close to a sensor are also more difficult to calculate
due to the equation system being ill-conditioned. Neither
the starting nor the true orientations for the presented sim-
ulations are given and only one favorable true position is
tested. In addition, while the initial position is varied, the
way in which this is done is not specified either. This has a
large negative impact on the conclusiveness of the data that
is presented.

19

Figure 2.14: Effect of the distance between the initial guess and
the true magnet position on the execution time for five differ-
ent optimization algorithms based on five 1D sensors and undis-
turbed measurements by Hu et al. [2005]. Overall, Multilevel Co-
ordinate Search is the slowest and Levenberg-Marquardt is the
fastest approach.

The fact that the execution time is not close to zero for initial
values that are close to the true values potentially indicates
problems with the measurement of the execution time or a
needlessly high constant overhead in the implementations
of the algorithms, as they should only need a few, if not just
one step to solve, unless an unfavorable initial value for the
magnet orientation was chosen.

To speed up the computation time and to increase the This linear algorithm
is faster than
Levenberg-
Marquardt, but
requires more
sensors and is less
precise.

reliability of the localization compared to Levenberg-
Marquardt, Hu et al. [2007] follow up by proposing a linear
algorithm. A downside of the method is that it requires 15
measurements (five 3D sensors) to work, whereas only five
measurements are needed in general to create a fully deter-
mined equation system. According to the simulations that
the authors performed, more than five sensors are prefer-
able when noise is present in the measurements. No exact
numbers are given, but the authors claim that the proposed
algorithm is about ten times faster than the solution using
the Levenberg-Marquardt method, while having suitable
localization accuracy under real-world conditions.

20 2 Related work

Figure 2.15: Permanent magnet localization system by Hu et al.
[2006], consisting of sixteen HMC1053 B-field sensors, instru-
mentation amplifiers, analog-digital converters, a power supply
and a PC

To profit from the strengths of both methods, namely the
speed of the linear approach and the accuracy of the non-
linear optimization, Hu et al. [2008] combine both methods
by using the result of the former as initial values for the
latter.

Based on their research on localization procedures, Hu
et al. [2006] built a real system out of sixteen HMC1053 3D
anisotropic magnetoresistive (AMR) sensors in a grid pat-
tern (Figure 2.15). The sensors measure field strengths of up

21

to ±6G and produce three analog output signals, which are
amplified by AD623 instrumentation amplifiers and sam-
pled at 12 bit, leading to a resolution of about 3mG/lsb.

They use this system to determine the optimal number of In practice, adding
more sensors to the
network increases
the accuracy of the
results up to a point.

sensors to minimize the positioning and orientation errors:
A minimum of 8 sensors is needed for an average localiza-
tion error of about 10%. After adding more than 15 sen-
sors, the average error settles at around 5% and does not
improve any further. They also test the influence of various
materials when they come in between the sensor array and
the magnet. Books, humans, copper plates and aluminum Non ferromagnetic

materials do not
interfere with
magnetic tracking.

have almost no measurable effect, while a steel bar renders
the localization results unusable.

Hu et al. [2010] follow up their work by building a sensor 3D sensor
arrangements can
increase the
accuracy and
sensing range
considerably.

network in the form of a four-sided cube to increase the
measurement range over the previous limit of 15cm (Fig-
ure 2.16). This improved the localization accuracy signifi-
cantly and allows the localization of magnets at most posi-
tions inside of the cube.

(a) AMR Sensor cube (b) Signal processing hardware

Figure 2.16: Permanent magnet localization setup by Hu et al.
[2010], with 64 AMR sensors on a four-sided cube and several
modules for signal conditioning and analog-digital conversion

Assessment: The hardware is designed properly to get a
good signal-to-noise ratio in the measurements, but bet-
ter components have become available since this work has
been published, which is an opportunity for improvement.
The decision to arrange the sensors in 3D makes perfect
sense for the application that the authors have in mind and
the size and cost are not a problem either. For our applica-
tion, we are interested in getting the best possible sensing
range and performance out of planar sensor networks to
support a wide variety of applications and environments,
but it is evident that 3D sensor placements are very benefi-
cial and should be supported as well.

22
2

R
elated

w
ork

publication coverage [cm] system size tracked quantities tag type field type sensor tech. sensors samples/s

Schlageter et al. [2001] 9×9×14 flat, portable 3D position, 2D orientation passive static 1D Hall 16 50

Hu et al. [2006] 20×20×15 flat, large 3D position, 2D orientation passive static 3D AMR 64 5

Han et al. [2009] 8×12 flat, portable 2D position passive static 2D AMR 2 ≫50

Hook et al. [2009] 10×10×n.a. thick, heavy 2D intensity map passive static coils 64 55

Hu et al. [2010] 50×50×50 cuboid, large 3D position, 2D orientation passive static 3D AMR 64 10

Hashi et al. [2011] 21×21×28 cuboid, large 3D position, 3D orientation passive alternating coils 25 n.a.

Liang et al. [2012] 6×8×2 flat, portable 2.5D position, 60° tilt passive static 1D Hall 192 >60

Liang et al. [2013] 16×12×4.4 flat, portable 3D pos., 360° roll or 45° tilt passive static 1D Hall 768 >30

Fernandez et al. [2020] ≈20×20×10 moderate 3D position, 3D orientation active alternating 9D IMU 2 100

Our approach arbitrary×t.b.d. tiny, wearable 3D position, 3D dipole moment passive static 3D AMR 2-126 1000

Table 2.1: Comparison of other occlusion-free and predominantly B-field based localization systems.
The dimensions in the coverage column are given as x×y×z, with z being height. All of the systems with 2D sensor arrangements can
be scaled in x and y directions, so the maximum sensing range z is the most interesting. It has to be noted that the sensing ranges have
been determined under different thresholds and conditions, so the numbers are not directly comparable. They do, however, give a
rough impression of what can be expected of the systems. Our sensor network is comparatively sparse and the sensors can be placed
in arbitrary locations in 3D. 2D sensor configurations are especially useful in practice though, for installing the system under unused
surfaces, so getting the most out of this kind of configuration should definitely be a focus for our work. We include our work in the
table, but the final assembly and testing are out of scope, so the sensing range remains to be determined.

23

Our work

In the following, we summarize the key points of the dis-
cussed related work and explain their most limiting draw-
backs for our intended application areas, e.g. gestural input
in unused spaces [Drescher-Manaa, 2022]. Then, we give a
short overview of the capabilities of our system.

GaussBits [Liang et al., 2013] offers high positional accu-
racy and the option to identify and track multiple markers,
due to the design of the localization algorithm. However,
the latter relies on a large number of sensors to work, which
leads to a low refresh rate and an impractically expensive
system. The Ferromagnetic Input Device [Hook et al., 2009]
uses pickup coils as sensors, which makes it very large and
heavy. In addition, it is only able to track changes in the
system, and not the steady state. In contrast, the Wire-
less Magnetic Position-Sensing System [Hashi et al., 2011]
uses much smaller and lighter coils and alternating fields,
giving it the ability to measure the absolute marker posi-
tion. On the other hand, the need for high exciting volt-
ages and large exciting coils severely limits the flexibility
to set up systems of different shapes and sizes. In addi-
tion, electromagnetic compatibility may be a concern. The
Tracking System with Five Degrees of Freedom [Schlageter
et al., 2001] misses the sixth degree of freedom and relies
on Hall sensors, which limits the sensing range compared
to AMR sensors. The 3-Axis Magnetic Sensor Array System
[Hu et al., 2006] uses a slow approach for the localization,
and thus suffers from a low refresh rate. In addition, the
low degree of integration of the circuits makes the modules
somewhat large and increases the power consumption, lim-
iting the portability. It is based on old hardware as well,
opening up some room for improvement.

We design a system that is compact and has low power
requirements to maximize portability. It is possible to in-
stall the system in existing environments, without the con-
straints of having to place the sensors at a particular pat-
tern, on a single plane or at certain orientations. In addi-
tion, the system is modular to allow for the customization
of the sensing regions. The localization needs to be very
fast to allow for high refresh rates of up to 1kHz and low
latency, making it suitable for using it as a real-time input
device for HCI applications like gesture detection. A high
absolute localization accuracy would be beneficial, but is
not necessary for applications, where visual feedback can
be provided.

25

Chapter 3

Hardware

Figure 3.1: Overview of all the system components that are used
in development: Two debug probes, namely an Atmel ICE (white
box, top left) and a MCU-Link (blue PCB, bottom right), the eval-
uation board with the controller (black PCB, center), a B-field sen-
sor PCB on the programming socket (white, bottom left) and a
sensor with 3D printed case for protection (bottom center).

To achieve the goals that we set for our system at the end We prioritize
compactness,
flexibility and sensing
range.

of Chapter 2, we have to reduce the amount of modules
and components to the absolute minimum, while maximiz-
ing the sensitivity for a high sensing range. To that end,
we build up on the work of Drescher-Manaa [2022] who
investigated the suitability of the MMC5633 sensor for ges-

26 3 Hardware

ture input applications. The MMC5633 is a 3D AMR sen-
sor with fully integrated sensing elements, signal condi-
tioning, sampling, filtering and an I3C interface. Due to
shortcomings in the design of the I3C interface and the im-
plementation of the sensor, each sensor module PCB also
hosts an ATtiny24A. As of this writing, very few controllers
with I3C support are commercially available. We chose the
LPC5536, an ARM Cortex-M33 based microcontroller with
clock speeds up to 150MHz, a floating point unit, one I3C
bus interface, eight serial interfaces and a USB 2.0 full speed
host and device controller.

3.1 Issues and benefits of I3C

I3C is a bus specification that attempts to fix several short-
comings of I2C [MIPI, 2021]. I2C uses 7 bit addresses to
enable the controller to communicate with specific target
devices. The addresses are usually fixed by the manufac-
turer for each kind of device, making it likely for system de-
signers to encounter address conflicts on buses with many
targets. To make this less likely to happen and to make it
possible to use more than one instance of the same device
on the same bus, some vendors offer the same part under
different part numbers with different preprogrammed I2C
addresses or add extra pins that can be used to set some
bits of the address externally. Both workarounds, however,
increase the cost of the systems that rely on them.

To remedy this, I3C introduces a protocol that enables theI3C has fewer
problems with

address conflicts
than I2C, except for
in our case, where

every sensor still has
the same address.

controller to assign addresses to targets dynamically on
startup. For this to work, an arbitration is necessary to
prevent multiple devices from receiving the same address.
Many details are omitted, but the core mechanism works
as follows: First, the controller broadcasts a command that
is an indicator for targets that the address assignment has
started. The targets respond by sending their 48 bit provi-
sioned ID, which consists of 15 bits for a manufacturer ID,
1 bit that dictates whether the next 32 bits are random or set
by the manufacturer, 16 bits for the part ID, 4 bit for the in-
stance ID and lastly, 12 bits for device characteristics. While
all targets send their provisioned IDs in unison, they also
listen to the data line of the bus to detect whether a target
is responding with a lower provisioned ID. If there is one,
the devices with the higher IDs will sit out the rest of the ad-
dress assignment and wait for the next round. The problem
here is that, for a bus where all targets are the same device,

3.2 Sensor 27

all provisioned IDs will only differ in the 4 bit instance ID
section, exacerbating the problem that it was meant to fix.
Even worse, the MMC5633 AMR sensors all have their in-
stance IDs set to zero, meaning that all IDs are identical and
only one can be used per I3C bus.

Another useful capability of I3C is the timing control. The I3C makes it possible
to start all
measurements
exactly at the same
time.

most basic way to use the network to make continuous
measurements is letting the controller instruct each sensor
to start a measurement, one by one, and polling for the re-
sults in the same order. This will cause offsets in the timing
of the individual measurement results, which translates to
increased errors and possibly reduced performance in the
localization step. With I3C, it is possible to broadcast an in-
struction that makes all sensors start taking measurements
continuously, which aligns the timings very closely and re-
duces the workload of the controller. To prevent drift be-
tween the timings of the sensors, I3C specifies sync ticks
that the controller has to send periodically to realign the in-
dividual sensor clocks. Polling is not necessary anymore,
either. When a sensor completes a measurement, it sends
an interrupt through the bus to convey this information to
the controller, which can then collect the data. This again
drastically reduces the workload of the controller, freeing it
up to either perform more important tasks or enter a sleep
mode to save energy, which might be beneficial for portable
systems in battery powered applications.

3.2 Sensor

We designed the sensor modules with the interests of future We made the sensor
modules as small as
possible.

users in mind. 1mm pitch JST-SH connectors are placed on
each of the four sides of the PCB (Figure 3.3) and wired in
a way to allow the modules to be connected in a grid (Fig-
ure 3.4). If the cables all have the same length, this makes it
very easy to keep the distances between sensors the same. It does not matter

how the sensors are
connected among
each other, as long
as they are
connected.

Each of the connectors can be connected to any other, with-
out any chance of causing damage, even when connecting
ports of the same board. We chose this kind of connector
for its size. Smaller connectors are available, but would be
difficult to plug in. Larger connectors, on the other hand
would increase the size of the module, which might limit
the environments that it can be used in. Even the connec-
tors that we chose are already responsible for about 85% of
the PCB area (Figure 3.2). The dimensions of the PCB are
18mm×18mm.

28 3 Hardware

(a) Top (b) Bottom

Figure 3.2: Sensor module PCB, with a controller and connectors
on the top and the B-field sensor on the bottom side

The MMC5633 itself comes in a chip scale package of onlyThe sensors are tiny
and consume little

power, making them
ideal for wearable

applications as well.

0.85mm×0.85mm×0.4mm, making it ideal for applications
that require the B-field sensors to fit into tiny spaces. For
non-modular applications, only a ceramic capacitor needs
to be placed close to a sensor, making it ideal for integra-
tion in wearable items or fabric as well. Due to its small
size, the orientation of the MMC5633 on the circuit board
varies a lot from module to module though, so a calibra-
tion is required for good localization results. We placed the
sensor at the bottom of the module to keep it as far away as
possible from ferromagnetic metals such as nickel, which
is often used as plating in component pins and will distort
the magnetic fields. The lead connections of the four sensor
pads break quite easily when external forces are applied,
so it is advisable to place a drop of resin on the sensor for
protection.

(a) Top (b) Bottom

Figure 3.3: Assembled sensor module PCB, with a controller and
connectors on the top and the B-field sensor on the bottom side

Three ceramic capacitors are placed on the top side of the
module, which are meant to stabilize and filter the power
supply lines. Due to the low internal resistance of ceramic
capacitors and the inductance of long wires, hot plug-

3.2 Sensor 29

ging modules to an active power supply will cause voltage
transients that can readily damage logic-level integrated
circuits. To prevent that from happening, we included
a transient-voltage-suppression diode that will clamp the
supply voltage on each module to acceptable levels. Hot Hot plugging can

cause issues, but we
took measures to
prevent damage.

plugging may still cause transients on the two I3C lines,
which is not dangerous, but will be picked up by the con-
troller. The controller then assumes that to be an indica-
tor for an in-band interrupt and will get stuck in a subrou-
tine waiting for a target to send data, which evidently never
happens, so hot plugging should be done with care.

Figure 3.4: Sensor module schematic

To make dynamic address assignment work, we included A microcontroller on
each sensor module
fixes the dynamic
address assignment
of I3C.

the ATtiny with the smallest package size that still has a
sufficient number of I/O ports on the sensor module, which
turned out to be the ATtiny24A. With a microcontroller
on each module, it would be possible to preprogram them
with different static addresses and use I2C, but even under
the circumstances that we described, I3C still offers much
higher baud rates with a clock frequency of 12.5MHz com-
pared to 100kHz for standard, or 400kHz for fast I2C. In I3C has much higher

baud rates than I2C.addition, not having to resort to static addresses makes all
sensor modules easier to program and users will not need
to be concerned about connecting more than one sensor
module with the same address to the same network.

To fix the address assignment, we added a fifth wire to the
connector. Each of the four connectors has the fifth pin con-
nected to a different I/O port of the microcontroller. With
this and a simple one wire protocol, we implemented a
depth-first network discovery and toggle mechanism. Each
time the controller sends a pulse through wire five, one of
the sensors will have its power supply cut off and recon-
nected. This makes it forget its dynamic address and makes

30 3 Hardware

it willing to participate in the next dynamic address assign-
ment. The controller can thus just alternate between reset-
ting single sensors and assigning them a dynamic address.

(a) Top (b) Bottom

Figure 3.5: Sensor module in enclosure with orientation marker
on the top and the B-field sensor on the bottom

To protect the sensor module assembly from damage, weAn enclosure
protects the sensor

module from
damage.

designed an enclosure (Figure 3.5). Rounded corners pre-
vent damage to and from the environment, bevels around
the connectors help with plugging them in and a rim
around the bottom of the PCB acts as a spacer for the sen-
sor. We also added adhesive putty on the bottom of the
PCB, which lets us place or remove sensors on about any
surface. The PCB is installed in the case by just pressing
it in from the bottom. The size of the complete module is
19mm×19mm×6.7mm.

(a) Without sensor (b) With sensor

Figure 3.6: Sensor module programming socket. The outer pins
lock the module in place while the inner spring-loaded pins con-
nect to pads on the underside of the module. The programming
device can be connected to the shrouded header with standard
pin configuration.

The programming connectors for the ATtiny are on the bot-A programming
socket simplifies

programming.
tom of the PCB to allow for programming the fully assem-
bled and encased module. For this, we built a socket (Fig-
ure 3.6) with three outer pins to lock the sensor module in

3.3 Controller 31

place and three spring-loaded pins to connect to three ad-
ditional pads in the center, forming the six connections that
are necessary for programming. An LED in the center of the
socket indicates a successful connection. Due to the place-
ment of the pads, it is not possible to install a module in a
wrong way.

3.3 Controller

The controller has the task of coordinating, processing and We created an
evaluation board for
the microcontroller
that also hosts
short-circuit-proof
voltage regulators, a
breadboard, a fully
compliant USB
controller as well as
USB, debug and I3C
connectors.

bundling the measurements, and providing a clean API
over USB. As of this writing, no evaluation boards for mi-
crocontrollers with I3C support are available, so we had to
build our own (Figure 3.7).

Figure 3.7: Assembled controller evaluation board. Pull-up re-
sistors, a boot order change button and an RGB status LED, in-
dicating whether the processor is idling, busy or in an interrupt
routine are arranged on the breadboard.

We were only able to obtain samples of the 64 pin version of
the microcontroller, which does not have the USB module
bonded to any pins. An optional I3C pin is missing as well,
so we had to compensate for that in our design (Figure 3.8).

32 3 Hardware

Figure 3.8: Controller evaluation board schematic

The controller board is powered by the host over the 5V
USB supply rail. Most modern integrated circuits require
much lower supply voltages of 3.3V, 1.8V or 1.2V, so we
included three XC6210 linear regulators to lower the volt-
age and provide a very stable and noise-free power supply
for the devices. The regulators also limit the operating cur-
rents to 800mA and short-circuit currents to 50mA, making
the board safe to experiment with. For this purpose, an on-
board breadboard is included on the PCB as well.

3.3 Controller 33

The controller board has three connectors: one USB port,
a four pin JST-SH connector for I3C plus power supply
and a 2×5 header for programming and debugging. Each
pin of the microcontroller is connected to two sockets of
the surrounding socket strip, except for the oscillator in-
puts, whose proper functioning would be at risk due to the
added capacitance.

We use a CY7C65213 UART to USB bridge to provide USB
functionality and make sure that the controller module is
fully USB 2.0 compliant. The maximum baud rate is 3
Mbps, but we found that the maximum was limited by the
flow control to about 2 Mbps in our setup. With efficient en-
coding, this should impose a similar limit on the data rate
as I3C, so that should not be an issue.

35

Chapter 4

Localization algorithm

In this chapter, we describe the methods that we employ
to estimate the magnet position, orientation and strength
from B-field measurements. Unless noted otherwise, refer
to Andrei [2022] for details on the optimization methods
that we used.

4.1 Problem formulation

We assume magnets to be ideal dipoles, whose field can be We use the dipole
equation as
approximation for the
fields of permanent
magnets.

calculated easily according to Equation (4.1). In this model,
the dipole is located at the origin of the coordinate system
and the field is calculated at position r ∈ R3 in Cartesian
coordinates. The dipole moment m ∈ R3 points towards
the north pole and its length is proportional to the field
strength that the dipole produces. µ0 is the vacuum per-
meability, which is approximately 4π · 10−7 [NIST, 2018].

Br(r,m) =
µ0

4π

(
3
⟨m, r⟩
∥r∥5

r − m

∥r∥3

)
(4.1)

For a more elegant problem formulation, we prefer one sta- A dipole equation
parameter is
substituted to allow
for independent
sensor and dipole
positions.

tionary global coordinate space with a dipole at position p
and multiple sensors at positions psk instead. To this end,
we reformulate Equation (4.1) by substituting r with psk−p,
so that the B-field at sensor k for a dipole at position p with
a dipole moment m can then be calculated as follows:

36 4 Localization algorithm

Bk(p,m) = Br(psk − p,m) (4.2)

With the six parameters (px, py, pz,mx,my,mz) of Equa-
tion (4.2), that we want to determine based on measure-
ments, we need two 3D sensors that provide six equations
to form a solvable equation system. More than two sensors
lead to an over-determined equation system, which cannot
be solved for p and m in the presence of measurement er-
rors. To circumvent this problem, we formulate a loss func-
tion that assigns an error value to p and m, based on the
deviations of the measurements from the fields that should
have been measured. By minimizing that equation, we can
obtain the values for p and m that have most likely lead to
the measurements.

First, we stack all measurements Bsk∈ R3 of all n sensors
into one column vector (4.4) and define a function B(p,m)
that maps the calculated fields at all sensor positions into a
column vector as well (4.3).

B(p,m) =

B1(p,m)
...

Bn(p,m)

 (4.3) Bs =

Bs1
...

Bsn

 (4.4)

Next, we define the residual R as the vector of differences
of the B-fields Bs that have, and the B-fields B(p,m) that
should have been measured:

R(p,m) = B(p,m)−Bs =

B1(p,m)
...

Bn(p,m)

−

Bs1
...

Bsn

 (4.5)

We then use the squared loss function (4.6) as the basis ofWe define a loss
function and
formulate a

minimization problem
to make the equation

system solvable for
the dipole position

and orientation.

our minimization problem, which is just the sum of the
squared residuals [Dodge, 2008].

L(p,m) =
1

2
∥R(p,m)∥22 (4.6)

According to the Gauss–Markov theorem [Dodge, 2008],A loss based on
squared residuals is

easy to solve and
should yield good

results.

this error function is optimal under the assumption that
the errors in the error vector ϵ ∈ R3n for measurements

4.2 Determining the step size h 37

Bs = B(p,m)+ϵ are uncorrelated and Gaussian distributed,
with a mean of zero and equal variances. For real sensors,
these assumptions should be met reasonably well, which
is why we consider this kind of error function to be a good
choice for the problem at hand. The factor of 1/2 is optional
and has no impact on the optimal values for p and m, but
can be added to cancel out with a factor of 2 that appears in
derivatives.

The solution for the magnet position p and dipole moment
m can then be obtained by solving (4.7).

argmin
p,m

L(p,m) (4.7)

A large number of iterative methods exist to solve non- We perform the
minimization by
improving an initial
guess step by step.

linear problems of this kind. They can be classified into
direct methods, which only require the objective function
that is supposed to be minimized or maximized, and into
gradient-based methods, which require the objective func-
tion to be differentiable. All methods have in common that
they locate the optimum, either by successively improv-
ing an initial guess or by shrinking an interval, that is ex-
pected to contain the optimum. We choose the former to Determining the

update direction and
the update step size
independently may
improve the
performance of the
localization.

solve the localization problem (4.7), i.e. starting from some
values (p0,m0) and improving them step by step such that
L(pk+1,mk+1) < L(pk,mk). For this, we iterate according to
(4.8), which leaves us with two subproblems to solve. The
first subproblem is finding directions p̂ and m̂ to update
the current values pk and mk in. We will deal with that in
Section 4.3. The second subproblem is determining the op-
timal update step size h. We will have a closer look at that
in Section 4.2. With this, the general form of the iteration
equation is:

(
pk+1
mk+1

)
=
(
pk
mk

)
+ hk

(
p̂k
m̂k

)
(4.8)

4.2 Determining the step size h

Once the update directions p̂ and m̂ are found (Section 4.3), For a fixed update
direction, the loss
function becomes
one-dimensional.

we only need to search L : R6 → R along a single line, so
the loss function simplifies to Lline : R → R,

38 4 Localization algorithm

Lline(h) = L(p− hp̂,m− hm̂) (4.9)

and the minimization problem becomes

argmin
h

Lline(h) (4.10)

with update step size h. This is called line search. EvenThe one-dimensional
loss function makes
additional methods

feasible.

though Lline only depends on h, it is not faster to evalu-
ate than L. The advantage, that we are after, is the vast re-
duction of the search space from R6 to just R, which makes
using some methods possible, that would be too expensive
in R6. Given an update direction that points towards the
optimal solution, only one step would be necessary if we
can also find the step size that is required to step directly
into the goal.

We assume that (p̂, m̂) never points into the wrong direc-The update step size
h has to be

determined on a
logarithmic scale.

The methods need to
be adjusted to

accommodate this.

tion, so we can assert that h > 0. The magnitude of h can
vary by several orders, so it makes sense to search for this
factor on a logarithmic scale. This means that all the meth-
ods, that we present in the following subsections, need to
be adapted in this regard. We will examine three methods:
Grid Search (Section 4.2.1), Golden Section Search (Sec-
tion 4.2.2) and Newton-Raphson (Section 4.2.3). Some em-
pirical examples of Lline(h) are given in Figures A.1 to A.6.

4.2.1 Grid Search

Due to its one-dimensionality, it is feasible to search forGrid Search is fast,
stable, simple and

can distinguish
global and local

minima, but it scales
poorly with the size

of the search
interval.

a value of h that minimizes Lline(h) with a simple Grid
Search. For this, we just evaluate Lline(h) for a number of
equidistantly spaced h in a chosen interval and keep the h
that yielded the lowest result. Adapting it to search on a
logarithmic scale is easily done by multiplying the current
h with the Grid Search step size after each iteration, instead
of adding it. This algorithm is easy to implement in gen-
eral, but a few special cases have to be kept in mind when
applying it to this particular problem.

As can be seen in Figures A.1 to A.6, all instances of Lline(h)
have flat regions that converge in direction of positive and
negative infinity. Naive implementations, that start the

4.2 Determining the step size h 39

search from the lower or upper end of the interval, will
consistently choose either the largest or smallest h of the
flat regions. This will either bring progress to a stop for
small h, due to the tiny update step size, or foster parame-
ter evaporation, i.e. large steps that are optimal in the given
direction, but move orders of magnitude away from the op-
timal solution of L(p,m). A good example, that leads to a
very large step, can be seen in Figure A.1. A solution to the
problem is searching from the center of the interval or some
other preferred value outwards.

In addition, for instances of Lline(h) that have no minimum,
like the one seen in Figure A.1, it makes sense to check
the loss at the interval bounds, independently of the cho-
sen step size, as these positions are where the minimum is
going to be in these cases.

Grid Search offers many benefits: There is no risk of di-
vergence, as is often the case with gradient-based methods,
and it is possible to locate the global minimum, as long as
it falls into the sampled interval. Of the three methods, that
we consider for the line search, only Grid Search can gen-
erally find the global minimum of Lline(h), given a suffi-
ciently small search step size.

The downside is that it is necessary to halve the search step
size to double the amount of samples of Lline(h) for each
additional bit of precision of the resulting h. This means
that getting a good estimate of h with this method is usually
infeasible. It has to be noted that the final algorithm, that
we found, is not very sensitive to errors in h though, so this
is not too much of a problem.

4.2.2 Golden Section Search

A more efficient approach than an exhaustive search for Golden Section
Search is stable,
reasonably fast per
step, of medium
complexity and
scales well with the
search interval size,
but is not guaranteed
to find the global
minimum.

solving the minimization problem (4.10) is dividing the
search interval, similarly to the bisection method for find-
ing roots of a function. In bisection, two interval bounds
are be maintained, which need to be chosen so that they
bracket a root. In each step, the interval can then be halved
by replacing the appropriate bound with the center. To lo-
cate a minimum of a function instead, three values need to
be maintained, and the interval has to be split in proportion
of the golden ratio, hence the name Golden Section Search.
The method can be adapted to search in a logarithmic space

40 4 Localization algorithm

pretty easily as well, by maintaining and working on the
logarithm x of all h and calling Lline(e

x) to evaluate the loss
function.

As with the Grid Search, several special cases have to be
considered in implementations of Golden Section Search: A
step limit can be used as a stopping criterion, but it might
make sense to also detect cases where the maximum preci-
sion is reached early to increase the execution speed. Tradi-
tionally, the result is chosen from inside of the interval. The
minimum might be at the interval bounds as well though,
so the loss of these needs to be evaluated and maintained as
well, to be able to consider them for the final result. There
are a few more details that can be considered, but these two
are the most important ones.

With Golden Section Search, convergence is guaranteed
and at a much faster rate than with Grid Search: In each
step, the size of the interval is reduced to

√
5
2 − 1

2 ≈ 61.8%
of its former size. So for one additional step, the precision
of the result can almost be doubled. In comparison, Grid
Search requires practically doubling the amount of steps to
achieve the same.

The main disadvantage is the fact that convergence to the
global minimum is not guaranteed. For functions with
many minima, Golden Section Search might converge to
any of them. For very few samples, Grid Search might ac-
tually be faster than Golden Section Search with an equiv-
alent amount of steps as well, as Grid Search involves less
overhead per step.

There are ways to generalize Golden Section Search to n-
dimensional spaces [Rani et al., 2019], which makes it appli-
cable to minimizing L(p,m) directly, but comes at the cost
of increasing the number of loss function evaluations, that
are needed for each step by the power of n. It might still be
useful, but this is not tested in this work.

4.2.3 Newton-Raphson

The Newton-Raphson method is used to approximate a
root of a function f : R → R by iteratively improving an
initial guess x0. The intuition here is that, in every step, the
current best guess xk is replaced by the root of a tangent at
that point. The iteration rule is:

4.2 Determining the step size h 41

xk+1 = xk −
f(xk)
d
dxf(xk)

(4.11)

Newton-Raphson can also be adapted to locate local min-
ima by applying it to the first derivative of a function. In
addition, the function can be transformed into logarithmic
space by substituting x with ex. The iteration step then be-
comes:

xk+1 = xk −
d
dxf(e

xk)
d2

dx2 f(exk)

= xk −
(
exkf ′′(exk)

f ′(exk)
+ 1

)−1
(4.12)

We can use Equation (4.12) to solve the line search prob-
lem (4.10) by substituting f with Lline(h), which yields the
iteration rule for h:

hk+1 = hk −
d
dhLline(h)
d2

dh2Lline(h)

= hk −
d
dhL(p− hkp̂,m− hkm̂)
d2

dh2L(p− hkp̂,m− hkm̂)

(4.13)

The first and second derivatives of the loss function L with
respect to h are given in Equations (4.14) to (4.18). To make
them more concise, we substitute p− hp̂ by P and m− hm̂
by M .

d

dh
L(P,M) =

d

dh

1

2
∥R(P,M)∥2

=

〈
R(P,M),

d

dh
B(P,M)

〉 (4.14)

d

dh
Bk(P,M) =

µ0

4π(
P

(
3

c

∥P∥5
− 15

⟨p̂, P ⟩ ⟨M,P ⟩
∥P∥7

)
+ p̂

(
3
⟨M,P ⟩
∥P∥5

)
+M

(
3
⟨p̂, P ⟩
∥P∥5

)
+ m̂

(
1

∥P∥3

)) (4.15)

42 4 Localization algorithm

d2

dh2
L(P,M) =

d2

dh2
1

2
∥R(P,M)∥2

=

(〈
R(P,M),

d2

dh2
B(P,M)

〉
+

∥∥∥∥ d

dh
B(P,M)

∥∥∥∥2
) (4.16)

d2

dh2
Bk(P,M) =

µ0

4π(
P

(
−6

⟨m̂, p̂⟩
∥P∥5

− 15
⟨p̂, p̂⟩ ⟨M,P ⟩+ 2 ⟨p̂, P ⟩ c

∥P∥7
+ 105

⟨p̂, P ⟩2 ⟨M,P ⟩
∥P∥9

)

+p̂

(
6

c

∥P∥5
− 30

⟨p̂, P ⟩ ⟨M,P ⟩
∥P∥7

)
+M

(
3
⟨p̂, p̂⟩
∥P∥5

− 15
⟨p̂, P ⟩2

∥P∥7

)

+m̂

(
−6

⟨p̂, P ⟩
∥P∥5

))
(4.17)

c = −2a ⟨m̂, p̂⟩ − ⟨m̂, r⟩+ ⟨p̂,m⟩ (4.18)

Even though the expressions are long, the fact that many of
the operations are performed on scalars, and that many of
the same dot products repeat, makes the evaluation of the
derivatives sufficiently fast to be applicable.

As long as the initial guess is close to a root, it offers theNewton-Raphson
converges very
quickly, but may

diverge if the starting
position is too far

from a minimum, the
complexity is very

high, due to the long
derivatives and every

step is very
expensive.

advantage of converging much more quickly than Golden
Section Search. In our simulations we found that three
steps of Newton-Raphson is often enough to reach the full
double floating point precision. However, if the initial
guess is too far from a minimum it tends to diverge. It
must also be ensured by some other means that the initial
value lies within the attraction region of the global mini-
mum. Lastly, every single Newton-Raphson step is very
expensive. The time lost for the evaluation of the first and
second derivatives is often compensated by the high con-
vergence rate, but for the problem at hand, evaluations of
Lline(h) are very cheap in comparison, which gives the di-
rect methods an edge.

Newton-Raphson could also be applied to the update direc-
tion subproblem or the localization problem as a whole, but
that would require the second derivative of the loss func-
tion, which, as a tensor of order three, would be rather ex-

4.3 Determining the step direction 43

pensive to compute.

4.3 Determining the step direction

We consider three gradient-based methods for solving ei-
ther the whole localization problem or just the update step
direction subproblem. For non-linear equation systems the
general idea is to approximate the function that needs to be
minimized in every step with a linear or quadratic approx-
imation to take a step into the downhill direction.

Since our objective is minimizing the loss function, we need
the derivative of L

∇L(p,m) = ∇1

2
∥R(p,m)∥2 = J(p,m)TR(p,m) (4.19)

which in turn requires the Jacobi-Matrix J : R6 → R3n×6 of
B : R6 → R3n for n sensors:

J(p,m) =

∂B1
∂p

∣∣∣ ∂B1
∂m

...
...

∂Bn
∂p

∣∣∣ ∂Bn
∂m

 (4.20)

∂

∂p
Bk(p,m) =

∂

∂p
Br(psk−p,m) =

µ0

4π

(
15

⟨m, r⟩
∥r∥7

rrT − 3
mrT + rmT

∥r∥5
− 3

⟨m, r⟩
∥r∥5

I

)
(4.20a)

∂

∂m
Bk(p,m) =

∂

∂m
Br(psk−p,m) =

µ0

4π

(
3
rrT

∥r∥5
− I

∥r∥3

) (4.20b)

The following methods could be used for the line search as
well, but that would likely make little sense, as we would
just constrain the methods to step into the initial update di-
rection for multiple steps, instead of adjusting the update

44 4 Localization algorithm

direction in every step as well. It would also require the
rather expensive calculation of the derivative, albeit poten-
tially at a reduced cost. Our goal with the line search is solv-
ing the problem faster, which is why we only consider two
direct methods, that are less expensive to compute per step,
or Newton-Raphson, which might make up for its high cost
by converging much faster.

4.3.1 Gradient Descent

The simplest method that we evaluate is Gradient Descent.Gradient Descent is
simple and rarely

diverges, but often
converges too slowly.

Starting from an initial guess, we take steps into the nega-
tive gradient direction of the loss function to successively
reduce the loss.

(
pk+1
mk+1

)
=
(
pk
mk

)
− hJ(pk,mk)

TR(pk,mk) (4.21)

This method converges only linearly towards a local mini-
mum, which means that the error tends to zero like a geo-
metric series. This is often very slow, even if an exact line
search is used to determine h. On the other hand, this algo-
rithm generally does not diverge, making it a safe choice.
The cost and complexity per step is also very low, as it only
requires one matrix multiplication on the highest level.

As mentioned before, we include the update step scaling
factor h mainly to increase the rate of convergence, as Gra-
dient Descent is very stable as-is.

4.3.2 Gauss-Newton

Gauss-Newton is based on a linear Taylor approximation ofGauss-Newton
converges very

quickly when starting
close to a minimum,

but has a tendency to
diverge if it does not.

the loss function, which effectively solves a quadratic prob-
lem in every step. It iterates according to

(
pk+1
mk+1

)
=
(
pk
mk

)
− h (JTJ)−1JTR (4.22)

where JTJ is an approximation of the Hessian. When L
is represented reasonably well by the approximation, and

4.3 Determining the step direction 45

when pk and mk are close to the optimal result, this method
converges quadratically (i.e. very quickly). When these
conditions are not met, Gauss-Newton is prone to mak-
ing large steps, often increasing the parameters by several
orders of magnitude in directions that only lead to little
reductions in loss. This phenomenon is called parameter
evaporation [Transtrum and Sethna, 2012] and turned out
to be the main impediment when Gauss-Newton is applied
to the dipole localization problem. It might also happen
that JTJ is singular, or at least ill-conditioned, which can
happen for values for p and m that are close to zero or po-
sitions that are close to a sensor. In addition, if JTJ is not
positive definite, the step in the resulting direction might
not lead to a reduction in loss at all.

Computing the inverse of a matrix is generally not advis- Making use of matrix
decompositions is
advisable when
solving the inverse
term of the
Gauss-Newton
equation.

able, so three methods of choice for solving (4.22) are pre-
sented in the following.

Solution using Cholesky decomposition

We remember that the Cholesky decomposition decom-
poses a positive definite matrix A into the product of a
lower triangular matrix L with its transpose: The Cholesky

decomposition is
very fast, but fails for
non positive-definite
matrices and the
condition number of
J is squared, which
can result in poor
convergence rates.

A = LLT (4.23)

If A is not positive-definite, this is detected during the de-
composition, which then has to be aborted. To remedy this,
we decided to retry the decomposition after applying a reg-
ularization to A. An example would be adding the identity
matrix to A.

We apply the Cholesky decomposition (4.23) to JTJ in the
Gauss-Newton iteration step in Equation (4.22) and rear-
range it as follows:

(
p̂
m̂

)
= −(JTJ)−1JTR (4.24a)

⇔ JTJ
(
p̂
m̂

)
= −JTR (4.24b)

⇔ LLT
(
p̂
m̂

)
= −JTR (4.24c)

46 4 Localization algorithm

⇔ LT
(
p̂
m̂

)
= y, L y = −JTR (4.24d)

Equations (4.24d) can then be solved efficiently by forward
and backward substitution, respectively. While this is the
fastest method of solving Equation (4.22), it has to be noted
that calculating JTJ explicitly squares the condition num-
ber of J , which may have a negative impact on the con-
vergence speed when ill-conditioned equation systems are
encountered.

Solution using QR decomposition

As we know, the QR decomposition decomposes a ma-With the QR
decomposition, we
can avoid squaring

the condition
number, but it is

slower and much
more complex than

the Cholesky
decomposition.

trix A ∈ Rm×n into the product of an orthogonal matrix
Q ∈ Rm×m with a rectangular upper triangular matrix
R ∈ Rm×n:

A = QR (4.25)

We decompose J instead of JTJ to avoid squaring its con-
dition number and substitute it in the Gauss-Newton it-
eration rule (4.22). To avoid confusion with the residual
R(p,m), we rename the triangular matrix of the QR decom-
position to RJ .

(
p̂
m̂

)
= (JTJ)−1JTR (4.26a)

⇔ (JTJ)
(
p̂
m̂

)
= JTR (4.26b)

⇔ ((QRJ)
T (QRJ))

(
p̂
m̂

)
= (QRJ)

TR (4.26c)

⇔ ((RT
JQ

T)(QRJ))
(
p̂
m̂

)
= (RT

JQ
T)R (4.26d)

⇔ RT
JRJ

(
p̂
m̂

)
= RT

JQ
TR (4.26e)

⇔ RJ

(
p̂
m̂

)
= QTR (4.26f)

We see that most of the terms cancel out, making the final
result simple to compute via backward substitution.

4.3 Determining the step direction 47

Solution using singular value decomposition

We recall that the singular value decomposition (SVD) de- With the singular
value decomposition,
we can avoid
squaring the
condition number,
use U for a
convergence
criterion and
calculate the
condition number of
J in exchange for
longer execution
times.

composes a real matrix A ∈ Rm×n into a rectangular di-
agonal matrix Σ ∈ Rm×n and two orthogonal matrices
U ∈ Rm×m and V ∈ Rn×n:

A = UΣV T (4.27)

By decomposing J instead of JTJ , we avoid squaring its
condition number and get:

(
p̂
m̂

)
= (JTJ)−1JTR (4.28a)

⇔
(
p̂
m̂

)
= ((UΣV T)T (UΣV T))−1(UΣV T)TR (4.28b)

⇔
(
p̂
m̂

)
= ((V ΣUT)(UΣV T))−1(V ΣUT)R (4.28c)

⇔
(
p̂
m̂

)
= (V Σ2V T)−1V ΣUTR (4.28d)

⇔
(
p̂
m̂

)
= V Σ−2V TV ΣUTR (4.28e)

⇔
(
p̂
m̂

)
= V Σ−1UTR (4.28f)

We see that most terms cancel out and that the final equa-
tion can be computed very easily, with just a few matrix
multiplications. Since Σ is a diagonal matrix, it can be in-
verted by just replacing every diagonal entry with its mul-
tiplicative inverse.

4.3.3 Levenberg-Marquardt

Levenberg and Marquardt proposed to add a damping Levenberg-
Marquardt
interpolates between
Gradient Decent and
Gauss-Newton,
combining their
robustness and high
convergence rate,
given that λ is
chosen appropriately.

term, consisting of a scalar scaling factor λ and a positive
definite diagonal matrix D, to the Gauss-Newton iteration
rule (4.22) [Transtrum and Sethna, 2012]:

(
pk+1
mk+1

)
=
(
pk
mk

)
− h (JTJ + λD)−1JTR (4.29)

48 4 Localization algorithm

For limλ→0 the term (JTJ + λD)−1 is just (JTJ)−1, which
results in the Gauss-Newton iteration rule (4.22), while for
limλ→∞ the term (JTJ + λD)−1 becomes (λD)−1, which is
the Gradient Descent step (4.21) divided by λ for D = I ,
where I is the identity matrix. This means that λ is effec-
tively used to smoothly interpolate between Gauss-Newton
and Gradient Descent, so, by choosing an appropriate λ,
a compromise can be made between convergence rate and
stability during each step.

Methods of choosing λ can be classified as direct or indirect:

A common direct method is decreasing λ by some factor
after each step to increase the step size and speed up con-
vergence. If the loss happens to increase after a step, λ is in-
creased by another factor and the step is reevaluated until
the loss decreases. This way, convergence can be enforced,
however, potentially only at slow rates depending on the
problem and the choice of D.

Indirect approaches are based on the idea of first choosing
a step size δ in such a way that the approximation in that
region is sufficiently accurate. After that, λ is determined

such that ∥
(
p̂
m̂

)
∥ ≤ δ.

It has been reported that neither of these methods consis-
tently outperforms the other one [Transtrum and Sethna,
2012]. Rather, the performance depends highly on the prob-
lem and the rate at which λ needs to be adjusted.

We combine Levenberg-Marquardt with the update step
scaling factor h, as we did with previously mentioned
methods, but it should be noted that this is usually
not done, as choosing appropriate λ suffices to make
Levenberg-Marquardt work as a so-called trust region
method. However, if the line search can be performed suf-
ficiently quickly, it might still lead to improvements in the
convergence rate, which is why we added it here as well.

Solution using Cholesky decomposition

We apply the Cholesky decomposition (4.23) to (JTJ + λD)
in the Levenberg-Marquardt iteration step in (4.29) and re-
arrange it as follows:

4.3 Determining the step direction 49

(
p̂
m̂

)
= (JTJ + λD)−1JTR (4.30a)

⇔ (JTJ + λD)
(
p̂
m̂

)
= JTR (4.30b)

⇔ LLT
(
p̂
m̂

)
= JTR (4.30c)

⇔ LT
(
p̂
m̂

)
= y, L y = JTR (4.30d)

The advantage in the Levenberg-Marquardt case compared
to Gauss-Newton is that (JTJ + λD) can be expected to be
numerically positive-definite, so the decomposition should
always succeed. The downside is that the decomposition
will have to be repeated any time that the loss does not de-
crease during an optimization step, and λ needs to be ad-
justed, as it is part of the decomposed term.

Solution using QR decomposition

We apply the QR decomposition (4.25) to J in the
Levenberg-Marquardt iteration step in (4.29) to avoid the
increase in the condition number and also to avoid having
to repeat the decomposition after adjusting λ:

(JTJ + λD)
(
p̂
m̂

)
= JTR (4.31a)

⇔ ((QRJ)
T (QRJ) + λD)

(
p̂
m̂

)
= (QRJ)

TR (4.31b)

⇔ ((RT
JQ

T)(QRJ) + λD)
(
p̂
m̂

)
= (RT

JQ
T)R (4.31c)

⇔ (RT
JRJ + λD)

(
p̂
m̂

)
= RT

JQ
TR (4.31d)

The right-hand side can be computed with just matrix mul-
tiplications. (RT

JRJ + λD) is a triangular matrix, so the last
term can be solved via backward substitution.

50 4 Localization algorithm

Solution using singular value decomposition

We apply the singular value decomposition (4.27) to J in-
stead of (JTJ + λD) in the Levenberg-Marquardt iteration
step in (4.29) to avoid the increase in the condition num-
ber and to avoid having to repeat the decomposition after
adjusting λ:

(
p̂
m̂

)
= (JTJ + λD)−1JTR (4.32a)

⇔
(
p̂
m̂

)
= ((V ΣUT)(UΣV T) + λD)−1(V ΣUT)R (4.32b)

⇔
(
p̂
m̂

)
= (V Σ2V T + λD)−1V ΣUTR (4.32c)

⇔
(
p̂
m̂

)
= (V Σ2V T + λD)−1V ΣUTR (4.32d)

⇔
(
p̂
m̂

)
= (V Σ2V T + V λDV T)−1V ΣUTR (4.32e)

⇔
(
p̂
m̂

)
= (V (Σ2 + λD)V T)−1V ΣUTR (4.32f)

⇔
(
p̂
m̂

)
= V (Σ2 + λD)−1ΣUTR (4.32g)

(Σ2 + λD) is a diagonal matrix and can be inverted by re-
placing the diagonal entries with their multiplicative in-
verse. The remaining steps are just matrix multiplications.

Choice of D

We evaluate three possible choices for the damping matrixWe consider three
different damping

matrices, all of which
offer different
compromises

between robustness
and convergence

rate.

D in the Levenberg-Marquardt iteration step (4.29): The
identity matrix, the diagonal elements of JTJ , and the max-
imum diagonal elements of JTJ that have been encoun-
tered during a localization up to that point [Transtrum and
Sethna, 2012].

By choosing the identity matrix as the damping matrix, val-
ues that are lower in magnitude undergo higher damping
than the others. Values in JTJ , that are low in magnitude,
have little influence on the final result and may thus be
changed in rather large steps to counteract that. The addi-
tive damping equalizes the magnitudes of the values, mak-

4.4 Convergence, stop and abort criteria 51

ing it an effective measure against parameter evaporation.
The downside is that this choice of damping matrix gives
the method trouble of traversing narrow canyons in the loss
function.

A multiplicative damping can be implemented by choosing
the diagonal elements of JTJ as D. This enables Levenberg-
Marquardt to traverse narrow valleys in the objective func-
tion much faster, at the cost of being less effective at pre-
venting parameter evaporation, it has less of a damping ef-
fect on smaller values.

A compromise between these two choices for D is using the
maximum diagonal entries of JTJ that have yet been encoun-
tered during a localization. This way, the value scaling is
largely preserved, but the fact that the values in D never
decrease prevents inadequate damping of decreasing pa-
rameters.

4.4 Convergence, stop and abort criteria

After each iteration of the methods, that we discussed ear- We define three
different criteria for
stopping a
localization, one that
indicates success,
one that detects
failure and one that
determines that we
are not making any
progress and should
give up.

lier, we need to decide whether to stop or to continue. In
the following, we define three separate criteria to tell the
algorithm that it should stop. It has to be noted, though,
that this is not the focus of this work, so this aspect was
only researched and evaluated very briefly.

The one of the three that, is the easiest to define, is the abort
criterion. The information that it conveys when it is true is
that the algorithm takes too long to converge, and that it
is unclear whether any more meaningful progress will be
made. A step limit or a time limit are usually sufficient for
this purpose.

The stop criterion is supposed to detect cases, in which the
algorithm is unlikely to succeed, even when continued for
longer. Detecting this reliably is much more difficult. Rules,
that are based on the size of the update steps, on the reduc-
tion of the residuals or the reduction in loss do not work
well for the localization problem, because phases of low re-
ductions in these two metrics often occur even during even-
tually successful localizations. We have chosen to just put
limits on the values of p, m and R(p,m), respectively, as a
simple heuristic for divergence.

52 4 Localization algorithm

The convergence criterion is not trivial to define either, for
the same reasons that have been listed for the stop criterion.
One could argue that putting a limit on the loss or residuals
should be useful, but a certain value of loss does not trans-
late directly into a certain localization accuracy, so a result
that passes such a criterion would be unpredictable. In ad-
dition, the minimum achievable loss depends on the errors
in the data, which are not known in advance, so there is no
reliable way of choosing a suitable loss threshold to begin
with. Our testing confirmed these assumptions. We did,
however, manage to find a heuristic that performed almost
as well as the ideal convergence criterion, which compares
the current values of p and m with the true values:

cos ϕ =
∥UUTR(p,m)∥2

∥R(p,m)∥2
(4.33)

Here, ϕ is the angle between the residual vector and the tan-
gent plane of the model manifold, and U can be obtained by
applying the singular value decomposition to J [Transtrum
and Sethna, 2012]. In our tests, we managed to determine a
threshold for cos ϕ that was almost always reached as soon
as a positional deviation of less than 1mm was achieved,
making this a very effective convergence criterion.

53

Chapter 5

Evaluation

In this chapter, we explain the condition under which we We assess our
simulation results
based on two
metrics: the
convergence ratio
and the expected
computation time.

have run our simulations, use those to test several different
aspects of our system and interpret the results in terms of
two utility metrics. The most obvious metric is the amount
of localizations that found a suitable result divided by the
total number of localization attempts that were performed
in a simulation:

Rc =
nconverged

nconverged + naborted + nstopped
(5.1)

We will call this convergence ratio instead of convergence
rate to avoid confusion with the usual meaning of the lat-
ter. In addition, we will call methods that are optimized
to maximize the convergence ratio successful. Even though
this is quite a simplification, we will treat the convergence
ratio as the likelihood that a method converges within the
limits that are set for the simulations.

None of the methods that we tested could achieve conver- The expected
computation time is a
more useful metric
than the
convergence ratio.

gence ratios of 100% under any conditions, so a second met-
ric that accounts for the implications might be in order. If
a method fails, further localization attempts with different
initial values will be necessary until it succeeds once. For an
average execution time of successful localizations tconverged
and an average time of stopped or aborted localization at-
tempts tfailure, the expected computation time until a local-
ization is successful is given as follows:

54 5 Evaluation

te = tconverged + tfailure
1−Rc

Rc
(5.2)

We will call methods, that are optimized to minimize the
expected computation time, fast.

5.1 Simulations

Hardware

All simulations have been performed on an AMD Ryzen 9We avoid some
pitfalls to obtain

comparable results.
3900X CPU (12-Cores/24 Threads) on 22 threads to leave
some capacity for background tasks as well as the garbage
collector. The process has been given a high priority, the
CPU temperature was monitored and the clock frequency
has been fixed at 3.725 GHz to ensure reliable benchmark
results.

Convergence, stop and abort criteria

To avoid testing the adequacy of a convergence criterionWe use a
convergence

criterion based on
the true values to

eliminate it as a
variable in our tests.

and the performance of the solvers at once, we used the
knowledge of the true values pt and mt to construct an ideal
convergence criterion based on our requirements:

∥p− pt∥2 < 0.001m ∧ ∥m−mt∥2
∥mt∥2

< 1% (5.3)

As a stop criterion, we used a heuristic that is supposed to
detect divergence:

∥p∥∞ < 109 ∧ ∥m∥∞ < 1012 ∧ ∥R(p,m)∥∞ < 1024 (5.4)

The abort criterion is just a step limit. The optimal amount
of steps is subject to our evaluation when optimizing for
speed. When optimizing for success, we used a somewhat
arbitrary step limit of 50. Increasing the limit further only
lead the diminishing improvements in convergence ratios.

5.1 Simulations 55

Algorithm

All code has been implemented in Java 18 and was opti-
mized in hot spots using the Java Microbenchmark Har-
ness. We evaluate all three algorithms listed in Section 4.3
with all the possible decompositions, both with and with-
out line search. For Levenberg-Marquardt, all damping
methods will be tested as well, but we decided to leave out
the QR decomposition, as it is unlikely to offer any advan-
tages compared to the singular value decomposition in our
setting while also taking a very long time to simulate.

To test whether Levenberg-Marquardt can lead to an im- We make sure to find
the best λ for
Levenberg-
Marquardt to test its
limits under optimal
conditions.

provement in convergence ratio over the other methods un-
der optimal conditions, we determine λ with a logarithmic
Grid Search, with a step multiplier of

√
10 over the interval

[10−15, 1010]. For each sampled λ, we then additionally per-
form the line search if applicable, before evaluating the loss
function with the given λ and h. This is very slow, so we
excluded Levenberg-Marquardt from some speed bench-
marks, as the comparison with methods, that are optimized
for speed, would not make much sense.

We found that the optimal choice for λ often varies in sev- Determining λ with
direct methods likely
leads to subpar
performance.

eral orders of magnitude between steps for the dipole local-
ization problem, making direct methods of determining it a
poor choice. We also confirmed this in tests that are not in-
cluded in more detail, but are what led us to the decision to
use an exhaustive search to guarantee the usage of suitable
values for λ.

For the line search, we always start with a Grid Search, We perform the line
search by executing
a Grid Search,
Golden Section
Search and
Newton-Raphson in
that order.

whose optimal initial starting interval will be determined in
our tests. Skipping the Grid Search makes little sense, as we
know from our examples of Lline (Figures A.1 to A.6) that
we have to expect multiple local minima, which is some-
thing that Golden Section Search and Newton-Raphson
cannot deal with. In addition, a coarse Grid Search is very
cheap. The result of the Grid Search is the best value that
was encountered for h and [h/δ, h·δ] is set as the new search
interval, with δ being the Grid Search step size. We also in-
tersect the new search interval with the initial one to make
sure to not expand the search interval beyond the original
bounds.

The next step may or may not be a Golden Section Search,
depending on the chosen maximum number of steps for

56 5 Evaluation

this method, with the refined interval as input. The result
will again be a new search interval and a new optimal value
for h.

The optional last step is Newton-Raphson, which starts
with the optimal h that was found in the previous step and
provides a more accurate h if it started within the conver-
gence radius of a local minimum in the loss function, but
does not refine the search interval. The new value for h is
again constrained to the search interval, to make sure that
it remains in bounds.

Simulated system

We decided to place four sensors in a square pattern withAll simulations are
performed with four
sensors and under

ideal conditions
without errors, apart

from floating point
inaccuracies.

20cm distance to emulate a gesture input scenario where
the sensors have been placed on the underside of a table, as
shown in Figure 5.1. The calculated sensor measurements
are left as-is without performing quantization or adding er-
rors or noise. All calculations are performed on 64 bit float-
ing point values.

0
5

10
15

20

·0.010
5

10
15

20

·0.01

0

5

10

15

20

·0.01

x
y

z

Figure 5.1: Sensor placement, units are in cm. Due to the sym-
metry, the simulations only need to sample positions inside of
the box spanned by the axes.

A simulation consists of multiple localizations, with each
having a distinct set of parameters. There are four vectors

5.1 Simulations 57

or twelve parameters in total that need to be adjusted for
each localization, namely the initial values pi and mi and
the true values pt and mt, to generate data that is suffi-
ciently representative of the system as a whole. For pa- In each simulation,

we test many
combinations of
initial and true
values.

rameters that do not affect the bin that a localization is
sorted into, p and m are usually sampled according to Fig-
ures 5.3 and 5.5. For the simulations in Sections 5.2 to 5.4.1
these detailed sampling schemes have been used in all sim-
ulations for all four parameter vectors, resulting in a to-
tal of 9 434 112 different localizations after removal of cases
where the initial values equal the true values. For some
of the simulations it was necessary to randomly skip some
localizations to shorten the simulation times. This was es-
pecially the case for Levenberg-Marquardt, as it is slow and
has many variants that need to be simulated. No samples
were dropped in the simulations that lead to the results pre-
sented in Table 5.1.

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.2: Default p samples
3D grid, 3 samples per axis

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.3: Detailed p samples
3D grid, 4 samples per axis

−2
0

2
−2

0
2

−2

0

2

xy

z

Figure 5.4: Default m samples
8 points on a sphere, 3 scales
Vector lengths scaled according to log10 + 1

−5

0

5

−5
0

5

−4

−2

0

2

4

xy

z

Figure 5.5: Detailed m samples
12 points on a sphere, 4 scales
Vector lengths scaled according to log10 + 1

The simulations in Section 5.5 require a higher resolution
along the binned dimensions. The p and m distributions

58 5 Evaluation

that were used for that purpose are displayed in Figures 5.6
to 5.15. Points and vectors with the same color belong to
the same bin and simulation results within the same bin
are averaged to obtain a single value. All other parameters
are sampled according to Figures 5.2 and 5.4.

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.6: p with high x resolution
3D grid, 20 samples in x direction

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.7: p with high z resolution
3D grid, 20 samples in z direction

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.8: p with set distances from origin
9 points on a sphere segment, 20 scales

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.9: p with set distances from sensor
8 points on a half sphere, 20 scales

0

10

20
·0.01

0
10

20·0.01

0

10

20

·0.01

xy

z

Figure 5.10: p with 21 lines in xy direction
3D grid, 11 samples in x and y direction

−2
0

2

−2
0

2

−2

0

2

xy

z

Figure 5.11: m magnitude
8 points on a sphere, 20 scales
Vector lengths scaled according to log10

5.2 Optimal h search interval 59

Some of the metrics, that are used in the diagrams in Sec-
tion 5.5, depend on the corresponding initial or true value.
The red arrow in the sampling schemes, displayed in Fig-
ures 5.12 to 5.15, signifies the input vector or point.

0

10
20

0
10

20

0

10

20

·0.01·0.01

·0.01

xy

z

Figure 5.12: p distance
8 offsets on a sphere, 20 scales

−0.2
0

0.2

−0.2
0

0.2

−0.1

0

0.1

xy

z

Figure 5.13: m angle
Angle changed in 8 directions in 20 steps

0
2

4
0

2
4

0

2

4

xy

z

Figure 5.14: m scale
Input vector is scaled in 20 steps
Vector lengths scaled according to log10 + 5

−500
0

500
−500 0

500

−500

0

500

xy

z

Figure 5.15: m distance
8 offsets on a sphere, 20 scales

5.2 Optimal h search interval

All the methods, that we evaluate for determining the opti- We need to define an
interval to perform
the line search in.

mal update scaling factor h, which is supposed to minimize
the loss in the update direction, require a search interval or
a starting value. The most obvious approach to determine a
suitable search interval is running tests with a huge interval
and sampling the distribution of the optimal h values over
many simulations for each method and choosing an inter-
val that contains most of the distribution. To determine the
minimum of Lline(h) reliably, we perform a very fine Grid
Search with 100 steps per decade on the first and second

60 5 Evaluation

derivative to detect changes in the sign of the result. When
a sign change is detected, we apply Bisection to locate the
root. By doing this, we can record the locations of all ex-
trema and inflections of Lline(h). We then refine the results
for minima further by applying a Golden Section Search,
that based on a Lline(h) implementation that uses floating
point values with 96 bit mantissas, so that the final location
as a double precision floating point value is within 1 ulp of
the actual result.

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030 1040 1050
0

0.5

1

·105

(a) Gradient Descent

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030 1040 1050
0

1

2

3
·105

(b) Gauss-Newton, QR decomposition

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030 1040 1050
0

1

2

3

·105

(c) Levenberg-Marquardt, QR decomposition, diagonal damping

Figure 5.16: Histograms of optimal absolute h values in an interval of 10−50 to 1050, as
determined by a perfect line search, for a selection of the most successful methods of their
class. The h bins are on the x-axis and the counts on the y-axis. The transparent blue bars
are scaled by a factor of 10 to make bins with low counts more visible.

The results for a selection of methods are plotted in Fig-
ure 5.16. For Gradient Descent, the update step size usually
needs to be increased, often by several orders of magnitude.
For Gauss-Newton, h is mostly a damping term, with 1 be-
ing the most likely value and a distribution that rapidly de-
cays and reaches zero at about 10−10. The histogram for
Levenberg-Marquardt looks like a mixture of three Gaus-

5.2 Optimal h search interval 61

sians, but is overall very similar to the Gauss-Newton dis-
tribution. For all methods quite a few scaling factors are
at the lower bound of 10−50, with the actual optimal val-
ues likely being less than that. This might indicate that the
update vector points along a curved valley in the loss func-
tion, which results in the minimum of the loss function in
that direction being just a tiny step away. While most val-
ues are more or less lumped in the middle of the search
interval, for all three methods there are values that would
have exceeded 1050 as well. While the large search interval Optimal values for h

are spread over large
intervals.

most often guarantees that the line search algorithm finds
the h that minimizes the loss in the given direction, these
intervals are too large to search sufficiently quickly and in-
clude unreasonably large or small h values.

The impact that an update has on the current values for p Small h result in no
progress being
made. Conversely,
large h completely
override the result
with the update.

and m depends on the order of magnitude of the current
values pk and mk, the update vectors p̂k and m̂k and h. For
double precision floating point values the size of the man-
tissa is 52 bits, so the smallest value that we can add to 1
that results in an increase instead of being rounded away is
2-52. Conversely, when adding a value larger than 252 to 1,
the value of 1 will be rounded away. In the 1D case of our
update term (4.8), dk+1 = dk + hk d̂k, with double precision
floating point scalars d, these limits will shift depending on
the magnitude of the current value and update, dk and d̂k
respectively. If d̂k is smaller in magnitude than dk, the in-
terval for h in which both the update as well as the current
value will contribute to the final result will shift towards
higher values and vice versa.

To obtain a more meaningful representation of h that di- We can normalize
the update direction
vector, so that h
corresponds to the
impact of the update.

rectly corresponds to the impact of the update, we scale the
update direction vector to have the same magnitude as the
current result vector before performing the line search. We
will call these h relative and the h without normalization ab-
solute. For vectors v, we modify the update term (4.8) to
vk+1 = vk + h ∥vk∥

∥v̂k∥ v̂k. In this space we can limit the interval
of reasonable values for h to lie between approximately 2-52

and 252. In contrast to the 1D case, this method is not per-
fect, as h values beyond the limits can still lead to changes
in at least some components of the vectors, but it still opens
up a more useful space to search for h values and search
interval limits in. Similar to Figure 5.16, that was based on
the absolute h space, Figure 5.17 shows the results of the
corresponding simulations in the relative h space.

62 5 Evaluation

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030 1040 1050
0

0.5

1

1.5

min Ls Lf LsLf max·105

(a) Gradient Descent

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030 1040 1050
0

1

2

min Ls/f Lf/s max·105

(b) Gauss-Newton, QR decomposition

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030 1040 1050
0

1

2

min Ls Ls max·105

(c) Levenberg-Marquardt, QR decomposition, diagonal damping

Figure 5.17: Histograms of optimal relative h values, as determined by a perfect line search,
for a selection of the most successful methods of their class. The h bins are on the x-axis
and the counts on the y-axis. The transparent blue bars are scaled by a factor of 10 to make
bins with low counts more visible. Values for h that are below min have no impact on
the current values for p and m while scaling factors over max make the update override
the current values completely. The other lines mark the limits that can be set to make the
method as fast as possible (Lf) or optimize the robustness to initial values to make them as
successful as possible (Ls).

As a result of the normalization, the distribution for Gra-The normalization
leads to more

compact distributions
of optimal h.

dient Descent is much more compact. It is also noticeably
skewed towards lower values, which hints at the fact that
the update vector tends to point in a direction where only
little progress can be made, hence the small steps. For
Gauss-Newton, the variance of the distribution seems to
have decreased slightly. Interestingly, there are some values
far past the maximum marker, which would immediately
trigger any sensible divergence criterion and stop the lo-
calization process. The Levenberg-Marquardt distribution
is split into two parts. The values of the smaller distribu-

5.2 Optimal h search interval 63

tion are a little bit concerning, as they will result in slow
progress. Even worse, all methods chose update directions Sufficiently many tiny

or huge h are chosen
to have a negative
impact.

that lead to h that are smaller than 1050, which usually re-
sults in no progress at all and lets the method repeat the
same step until the step limit is reached and the localization
is aborted. Based on this we can assume that limiting the
range of permissible h values not only benefits the speed at
which we can perform the search, but also prevents stalling
and divergence.

The result of limiting the search intervals can be seen in
Figures 5.18 to 5.22. The limits have been determined as
described in Section 5.4. Especially for Gradient Descent a
large portion of lower h values have been cut off. This can
prevent the algorithms from stalling too much and hitting
the step limit, even if it means that the optimal reduction in
Lline might often be missed. All the small distributions over
2 have been excluded as well. The reason for this might
be that even h values that are not much greater than 2 are
already sufficient to at least cause a detour on the way to
the global minimum.

10−5 100 105 1010 1015
0

1

2

3

·104

(a) Absolute scale

10−5 10−4 10−3 10−2
0

1

2

·105

(b) Relative scale

Figure 5.18: Optimal h distribution: Gradient Descent optimized for speed, h limited from
3.8 · 10−6 to 3.1 · 10−2

10−5 100 105 1010 1015
0

0.5

1

1.5

·105

(a) Absolute scale

10−7 10−6 10−5 10−4 10−3
0

2

4

6

8

·105

(b) Relative scale

Figure 5.19: Optimal h distribution: Gradient Descent optimized for success, h limited
from 3.0 · 10−8 to 7.8 · 10−3

From Figures 5.18 to 5.22 it is evident that the choice of nor- We found very small
search intervals for h
in the relative space
that lead to high
performance.

malizing the update vector leads to very compact h spaces
that only span about four to six orders of magnitude and
can be searched very quickly. The corresponding distribu-

64 5 Evaluation

10−5 100 105 1010
0

1

2

·105

(a) Absolute scale

10−3 10−2 10−1 100
0

0.5

1

1.5

·105

(b) Relative scale

Figure 5.20: Optimal h distribution: Gauss-Newton with QR decomposition optimized for
speed, h limited from 2.4 · 10−6 to 2.0 · 100

10−5 100 105 1010
0

1

2

3

·105

(a) Absolute scale

10−3 10−2 10−1 100
0

2

4

·105

(b) Relative scale

Figure 5.21: Optimal h distribution: Gauss-Newton with QR Decomposition optimized for
success, h limited from 2.4 · 10−6 to 2.0 · 100

10−5 100 105 1010 1015
0

1

2

·105

(a) Absolute scale

10−4 10−3 10−2 10−1 100
0

1

2

3

·105

(b) Relative scale

Figure 5.22: Optimal h distribution: Levenberg-Marquardt with QR decomposition and
diagonal damping optimized for success: h limited from 3.1 · 10−5 to 2.0 · 100

tions of the absolute values often span more than 20 orders
of magnitude, which would take around four times longer
to search. In addition, it is unclear whether limits in the
absolute space would be feasible at all, as we might pre-
vent the algorithm from making the appropriate updates
depending on the current scale of the values and update.

5.3 Sensitivity to the h search interval

The conjectures, that we made in the last chapter, are
supported by the following simulation data (Figures 5.23

5.3 Sensitivity to the h search interval 65

to 5.34), in which we simulated the influence of the lower There is a large
plateau of acceptable
search interval
bounds, indicating
that they are
relatively uncritical,
as long as the lower
bound is not too high
and the higher bound
is not too low.

and upper h search interval bounds on the convergence ra-
tio, expected computation time and average computation
times for aborted and successful localization attempts. We
did this for all three algorithms, with the fixed parameters
chosen based on the best results in Table 5.1. The color
gradient in the corresponding figures ranges from blue for
good values over green to red for unfavorable values, i.e.
longer simulation times and worse convergence ratios. The
extra tick lines mark the optimum, which we determined
according to Section 5.4.

3 · 10−8

7
.8

·1
0
−
3

10−1410−1210−10 10−8 10−6 10−4

10−5

10−2

101

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.23: Successful Gradient Descent
h limits → convergence ratio
linear color gradient

3.8 · 10−6

3
.1

·1
0
−
2

10−1410−1210−10 10−8 10−6 10−4

10−4

10−1

102

105

Lower h limit

U
pp

er
h

lim
it

Figure 5.24: Fast Gradient Descent
h limits → expected computation time
logarithmic color gradient

3.8 · 10−6

3
.1

·1
0
−
2

10−1410−1210−10 10−8 10−6 10−4

10−4

10−1

102

105

Lower h limit

U
pp

er
h

lim
it

Figure 5.25: Fast Gradient Descent
h limits → average comp. time on success
linear color gradient

3.8 · 10−6

3
.1

·1
0
−
2

10−1410−1210−10 10−8 10−6 10−4

10−5

10−2

101

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.26: Fast Gradient Descent
h limits → average comp. time on abortion
linear color gradient

We can see the effects of the h search interval bounds on

66 5 Evaluation

the convergence ratio for the best methods of their class in
Figures 5.23, 5.27 and 5.31. For all methods, there are large
plateaus of acceptable values with clearly defined borders
parallel to the axes. We can deduce that the choice of the
lower bound needs to be below a certain threshold to allow
for the highest convergence ratio, but only has a slight neg-
ative impact on the execution time beyond that. The same
is true for the upper limit for Levenberg-Marquardt within
the simulated bounds. For Gauss-Newton, the convergence
ratio gradually decreases again after a certain value and
Gradient Descent has a sharply divided, somewhat small
range of optimal values for the upper limit.

2.4 · 10−4
2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.27: Successful Gauss-Newton
h limits → success rate
linear color gradient

2.4 · 10−4

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.28: Fast Gauss-Newton
h limits → expected computation time
logarithmic color gradient

2.4 · 10−4

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.29: Fast Gauss-Newton
h limits → average comp. time on success
linear color gradient

2.4 · 10−4

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.30: Fast Gauss-Newton
h limits → average comp. time on abortion
linear color gradient

5.3 Sensitivity to the h search interval 67

The influence of the search interval on the expected compu-
tation time for the methods whose parameters have been
chosen to optimize the speed is depicted in Figures 5.24,
5.28 and 5.32. While the values differ, the general result
is the same for all methods in the sense, that there is a
large plateau of suitable values. There is a slight tendency
towards smaller interval sizes, but the impact on the ex-
pected computation time is minimal for all h bounds on the
plateaus in the simulated regions.

3.1 · 10−5

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.31: Suc. Levenberg-Marquardt
h limits → success rate
linear color gradient

4.9 · 10−4

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.32: Fast Levenberg-Marquardt
h limits → expected computation time
logarithmic color gradient

4.9 · 10−4

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.33: Fast Levenberg-Marquardt
h limits → average comp. time on success
linear color gradient

4.9 · 10−4

2
·1

0
0

10−7 10−5 10−3 10−1

10−2

100

102

104

Lower h limit

U
pp

er
h

lim
it

Figure 5.34: Fast Levenberg-Marquardt
h limits → average comp. time on abortion
linear color gradient

68 5 Evaluation

5.4 Parameter tuning

We created a simple optimization program to find the op-We use an
optimization method

to tune the
parameters of our

localization algorithm
based on

simulations.

timal parameters in regard to our evaluation criteria (5.1)
and (5.2). To optimize the methods for a high robustness
to initial parameters, the h search interval bounds, the Grid
Search step size, the number of Golden Section Search steps
and the number of Newton-Raphson steps need to be cho-
sen. The step limit is set to 50, as increasing it would es-
sentially always result in slightly higher convergence ra-
tios, making it unsuitable for evaluation criterion (5.1). For
the optimization in terms of expected computation time, all
line search parameters and the step size are subject to opti-
mization.

The optimization algorithm works as follows: An initial setWe traverse the
discretized

parameter space in a
steepest descent

fashion.

of parameters is chosen, simulations are run based on these
with a wide variety of initial and true values, and the aver-
age result in terms of the success metric is recorded. After
that, neighbors of the parameter set are generated by in-
creasing or decreasing each individual parameter by one
step. For one set of k parameters this results in 2k neigh-
bors. The simulations are then performed and evaluated
again for the neighboring parameter sets. If one performed
better than the original, this set of parameters is chosen
as the new optimum and the procedure is repeated from
there from the start. The results of repeating this for every
method can be seen in Table 5.1.

5.4.1 Results

The top section of the table lists the results for the methods
without a line search, i.e. h = 1. The middle section shows
benchmarks with line search parameters that are chosen to
optimize convergence likelihood and the last sections was
optimized in regard to the expected execution time.

The columns are, from left to right, the abbreviation for
the method, the maximum number of steps until the lo-
calization is aborted, the lower and upper limits hmin and
hmax for the line search using a normalized update vec-
tor as described in Section 5.2, the step size for the Grid
Search GS, the number of steps of Golden Section Search
GSS, the number of steps of Newton-Raphson NR, the ex-
pected time until a localization was successful te, the av-

5.4 Parameter tuning 69

erage amount of steps performed until the method con-
verges stepsc, the convergence, abortion and divergences
ratios Rc, Ra and Rd and lastly the average time until con-
vergence, abortion or divergence tc, ta and td.

The methods are abbreviated as follows: Gradient De-
scent GD, Gauss-Newton GN and Levenberg-Marquardt
LM . The matrix decompositions that can be used to solve
the equation systems are the Cholesky decomposition CD,
QR decomposition QRD and singular value decomposition
SVD. The damping strategies for Levenberg-Marquardt
are the identity matrix I , the diagonal entries of the Jaco-
bian D and the maximum diagonal entries that have been
encountered MD.

We will use the methods without line search as a base-
line for the following comparisons. The displayed behav-
iors are very typical for the respective methods: Gradi- Gradient Descent is

unfit for dipole
localization.

ent Descent converges too slowly and has to be aborted
most of the time. Each individual iteration is very fast,
but many steps are needed on average to be successful,
which effectively makes this the most expensive method
of the ones that we evaluated. Gauss-Newton converges Baseline

Gauss-Newton
diverges more often
than not.

very rapidly, with less than seven steps on average until
convergence. The convergence ratio is much better than
Gradient Descent, but is still only about 30%. Each single
step is still performed reasonably quickly though, making
this a simple yet viable method for the localization of mag-
netic dipoles. Levenberg-Marquardt, as expected, boasts Levenberg-

Marquardt is likely
the best choice when
used as-is.

the highest convergence ratio of over 80% when solved
with the Cholesky decomposition and dampened with one
of the diagonal schemes. This comes at the price of need-
ing almost three times as many steps on average compared
to Gauss-Newton, though. While we published the execu-
tion time benchmarks, it has to be noted that Levenberg-
Marquardt was implemented by determining λ with a Grid
Search, making it unreasonably slow, but as successful as it
can be with a greedy optimization for λ. As a consequence,
the execution time benchmarks should not be used to com-
pare Levenberg-Marquardt to the other methods. With
that in mind, the baseline Levenberg-Marquardt looks very
promising based on the high convergence ratio and low av-
erage step count, but including the line search turned out
to have drastic effects on the results.

70
5

Evaluation

method limit hmin hmax GS GSS NR te stepsc Rc Ra Rd tc ta td

LM CD MD 50 14.53 ms 18.05 81.68% 18.29% 0.02% 8.97 ms 24.82 ms 7.90 ms
LM CD D 50 12.87 ms 18.57 81.27% 18.57% 0.16% 7.97 ms 21.44 ms 5.04 ms
LM SVD D 50 17.86 ms 18.85 75.68% 23.51% 0.80% 9.78 ms 25.92 ms 2.58 ms
LM CD I 50 8.92 ms 18.97 73.87% 26.02% 0.11% 4.63 ms 12.18 ms 0.73 ms
LM SVD I 50 9.85 ms 18.97 73.87% 26.02% 0.11% 5.11 ms 13.44 ms 0.80 ms
LM SVD MD 50 20.28 ms 19.09 71.59% 26.45% 1.96% 10.28 ms 26.91 ms 2.29 ms
GN SVD 50 0.41 ms 6.82 29.53% 2.28% 68.19% 0.12 ms 0.89 ms 0.09 ms
GN QRD 50 0.28 ms 6.82 29.53% 2.28% 68.19% 0.08 ms 0.60 ms 0.06 ms
GN CD 50 0.33 ms 6.82 29.53% 2.28% 68.19% 0.10 ms 0.73 ms 0.08 ms
GD 50 1,071.40 ms 30.51 0.04% 99.96% 0.00% 0.28 ms 0.47 ms 0.28 ms

LM CD D 50 3.1 · 10−5 2 15.5 2 1 27.00 ms 14.78 84.92% 15.08% 0.00% 16.89 ms 56.94 ms 25.41 ms
LM CD MD 50 2.4 · 10−7 1 21.0 3 1 29.51 ms 15.67 84.85% 15.15% 0.00% 18.81 ms 59.94 ms
GN QRD 50 2.4 · 10−4 2 15.5 2 1 0.51 ms 8.95 82.35% 17.65% 0.00% 0.24 ms 1.27 ms
GN SVD 50 6.1 · 10−5 2 15.5 2 1 0.59 ms 8.95 82.35% 17.65% 0.00% 0.27 ms 1.46 ms
GN CD 50 6.1 · 10−5 2 21.0 3 1 0.46 ms 8.97 82.32% 17.68% 0.00% 0.22 ms 1.16 ms
LM SVD D 50 4.8 · 10−7 2 15.5 5 1 29.93 ms 15.58 81.78% 18.15% 0.07% 17.46 ms 56.19 ms 4.02 ms
LM CD I 50 3.0 · 10−8 2 28.6 4 1 27.51 ms 16.39 80.76% 18.88% 0.36% 16.06 ms 48.95 ms 1.97 ms
LM SVD I 50 3.0 · 10−8 2 28.6 4 1 27.25 ms 16.39 80.76% 18.88% 0.36% 15.91 ms 48.49 ms 1.95 ms
LM SVD MD 50 2.4 · 10−7 2 15.5 3 2 33.96 ms 15.67 80.68% 19.13% 0.19% 19.34 ms 61.51 ms 12.80 ms
GD 50 3.0 · 10−8 7.8 · 10−3 11.6 2 47.23 ms 13.23 1.71% 98.29% 0.00% 0.22 ms 0.82 ms

GN CD 11 2.4 · 10−4 2 21.0 4 0.21 ms 6.95 66.52% 33.48% 0.00% 0.12 ms 0.19 ms
GN QRD 12 2.4 · 10−4 2 21.0 4 0.22 ms 7.15 69.25% 30.75% 0.00% 0.13 ms 0.21 ms
GN SVD 12 4.9 · 10−4 2 15.5 4 0.28 ms 7.14 69.23% 30.77% 0.00% 0.16 ms 0.27 ms
LM CD D 22 4.9 · 10−4 2 15.5 2 14.31 ms 12.57 72.67% 27.33% 0.00% 8.65 ms 15.07 ms 8.32 ms
LM CD MD 20 4.9 · 10−4 4 15.5 2 15.31 ms 12.19 66.70% 33.30% 0.00% 8.42 ms 13.79 ms 11.84 ms
GD 11 3.8 · 10−6 3.1 · 10−2 6.6 1 16.20 ms 7.65 1.03% 98.97% 0.00% 0.12 ms 0.17 ms
LM SVD I 24 4.8 · 10−7 2 21.0 2 17.61 ms 13.76 65.41% 34.14% 0.45% 9.23 ms 16.04 ms 1.36 ms
LM CD I 20 1.9 · 10−6 4 15.5 2 18.10 ms 12.66 56.86% 42.52% 0.62% 8.30 ms 13.10 ms 0.75 ms
LM SVD D 22 1.2 · 10−4 2 21.0 2 19.88 ms 12.83 64.02% 35.90% 0.08% 10.15 ms 17.36 ms 2.64 ms
LM SVD MD 20 3.1 · 10−5 4 15.5 3 21.01 ms 12.07 60.87% 38.73% 0.40% 10.21 ms 16.93 ms 4.45 ms

Table 5.1: Average simulation results. Simulated as described in Section 5.1 with about 9.4 million samples per dataset.
Top: methods without line search, middle: line search optimized for success, bottom: methods optimized for speed.

5.4 Parameter tuning 71

When introducing the line search and optimizing the pa-
rameters for a high convergence ratio, h is mostly used
as damping or very slight boosting term across the board.
This is not surprising, as the optimal h in terms of Lline is of-
ten smaller than one (Figure 5.17). The Grid Search is rather
coarse with step sizes between 15 and 30. Golden Section
Search is used in all methods with 2 to 5 steps and Newton-
Raphson is used in all methods but Gradient Descent to fin-
ish the line search. The convergence ratio of Gradient De- Gradient Descent is

still impractical, even
when combined with
a line search.

scent improved markedly by a factor of approximately 40
to a 1.71%, but still leaves it impractical. The main draw-

Gauss-Newton’s
convergence ratio
improves, being on
par with Levenberg-
Marquardt.

back of Gauss-Newton is very effectively addressed by the
damping that is introduced by the line search. The diver-
gence ratio dropped from over 68% in the baseline variant
to almost 0%, while the convergence ratio improved to over
82%, which is better than the one of the baseline Levenberg-
Marquardt. This comes at the cost of a 25% increase in steps
and 100% increase in time needed to converge, so there
should be a better compromise. Levenberg-Marquardt im- Levenberg-

Marquardt marginally
benefits from a line
search.

proves as well, needing about 3 steps less to converge. The
convergence ratio improved as well, but only very slightly.
With it being only 2% ahead of Gauss-Newton but requir-
ing almost twice as many steps and needing more time per
step it is not really worth considering.

The most interesting, but at this point least surprising re-
sults are obtained when optimizing the line search for ex-
pected executing time per localization, as defined in Equa-
tion (5.2). With its low convergence rate, Gradient Descent
is still completely outclassed, while our implementation of
Levenberg-Marquardt is not optimized for speed, and does
not provide any comparable data as a result. Considering
that a Levenberg-Marquardt iteration will always be more
expensive than one of Gauss-Newton, it would would need
to converge in fewer steps for it to be faster than Gauss-
Newton overall. Considering that λ shifts the update direc-
tion towards the one of Gradient Descent, which has been
shown to be very ineffective, this seems pretty unlikely. So, Gauss-Newton is by

far the most effective
approach when
paired with a well
tuned line search
based on a Grid
Search followed by a
Golden Section
Search.

the most effective approach according to our simulations is
Gauss-Newton, which on average needs only 212µs to find
the result when solved with a QR decomposition with a line
search based on a Grid Search followed by a Golden Section
Search. Newton-Raphson seemed to be too expensive to
warrant its use when optimizing for speed, independently
of the method.

72 5 Evaluation

5.5 Sensitivity to initial values

In this chapter we examine the simulation data in respect
to the influence that the initial values have on our success
metrics (5.1) and (5.2) for the original implementations as
a baseline and for the methods that we optimized. The
choices of parameters for the latter can be found in Ta-
ble 5.1. We denote all initial values with a subscript i and
all true values with a subscript t. The function d(x, y) is an
alias for the Euclidean distance between two points.

5.5.1 Successful methods

The influence of the initial values on the convergence ra-
tio is shown in Figures 5.35 to 5.37 for the original methods
and in Figures 5.38 to 5.40 for the optimized methods. All
of the latter have many things in common in this regard:
The sensitivity to the initial x and y coordinates of p is very
low. The z coordinate however should not be chosen tooThe initial p should

be chosen with some
height over the grid.

The choice of m
hardly matters, as

long as it is not zero.

small, as this seems to have a strong negative impact on
the convergence ratio. The purple graph suggests a depen-
dence on the distance between p and the origin, but if this
was the case we would expect a strong correlation with the
red or yellow curves, which is not present. We assume that
this effect is caused mostly by the dependency on the z co-
ordinate of p. In addition p should not be very close to a
sensor, with the bad impact of this likely being caused by
the bad condition number of the Jacobian. The most influ-
ential factor by far is the distance between the initial and
the true p. All methods are much more likely to converge if
this distance is small, with Gauss-Newton even reaching a
convergence ratio of over 99% if pi is within less than 2.5cm
of pt.

Both variants of Gradient Descent fail for all initial m that
are not identical to the true values. The sensitivity to initial
p is reduced a lot by the line search, but the overall conver-
gence ratio is still extremely low.

The sensitivity of Levenberg-Marquardt to the initial val-
ues is hardly affected by the addition of the line search.
Both the baseline and the optimized variant perform pretty
well overall. In contrast to the other methods, it essentially
cannot localize dipoles that are less than 2cm away from a
sensor and struggles for distances up to around 5cm. The

5.5 Sensitivity to initial values 73

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
·10−2

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
0

0.2

0.4

0.6

0.8

1
·10−2

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.35: Baseline Gradient Descent, convergence ratio

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.36: Baseline Gauss-Newton, convergence ratio

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.37: Baseline Levenberg-Marquardt, convergence ratio

74 5 Evaluation

0 0.1 0.2 0.3 0.4
0

2

4

·10−2

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
0

2

4

·10−2

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.38: Successful Gradient Descent, convergence ratio

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.39: Successful Gauss-Newton, convergence ratio

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.40: Successful Levenberg-Marquardt, convergence ratio

5.5 Sensitivity to initial values 75

choice of the initial m has rather little influence on the con-
vergence ratio. Only guessing the correct magnitude of m
is slightly advantageous, while underestimating it is a bit
of a handicap.

Gauss-Newton improved the most by the combination with Gauss-Newton
shows little sensitivity
to most initial values
that are not too close
to the grid.

the line search. For the baseline variant, the initial position
had to be close to the true value, while the initial dipole mo-
ment had to be larger than or at least close to the true value
in magnitude to work somewhat reliably. The improved
version shows little sensitivity to most choices of initial pa-
rameters and even outperforms Levenberg-Marquardt by
having much less trouble localizing dipoles close to a sen-
sor. As with Levenberg-Marquardt, the initial m has very
little result on the convergence ratio overall. There might
only be a slight dependence on the angle between the ini-
tial and true m, with smaller deviations being beneficial.

5.5.2 Fast methods

The influence of the initial values on the expected compu- The effects of the
initial and true values
on the expected
execution time match
the ones on
convergence ratio.

tation time is shown in Figures 5.41 to 5.43 for the original
methods and Figures 5.44 to 5.46 for the optimized meth-
ods. Overall, the effects turned out to be the same as for the
convergence ratio, so refer to Section 5.5.1 for more infor-
mation.

76 5 Evaluation

0 0.1 0.2 0.3 0.4

102

103

104

105

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 100.1 100.2 100.3 100.4

100

100.2

100.4

100 100.1 100.2 100.3 100.4

0 0.2 0.4 0.6 0.8 1
0

Figure 5.41: Baseline Gradient Descent, expected computation time

0 0.1 0.2 0.3 0.4

10−1

100

101

102

103

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103
10−1

100

101

102

103

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.42: Baseline Gauss-Newton, expected computation time

0 0.1 0.2 0.3 0.4

101

102

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103

101

102

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.43: Baseline Levenberg-Marquardt, expected computation time

5.5 Sensitivity to initial values 77

0 0.1 0.2 0.3 0.4

101

101.5

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 100.1 100.2 100.3 100.4

100

100.2

100.4

100 100.1 100.2 100.3 100.4

0 0.2 0.4 0.6 0.8 1
0

Figure 5.44: Fast Gradient Descent, expected computation time in ms

0 0.1 0.2 0.3 0.4

10−1

100

101

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103

100

101

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.45: Fast Gauss-Newton, expected computation time in ms

0 0.1 0.2 0.3 0.4

101

102

103

true px init px
true pxy init pxy
true pz init pz

d(pt, s) d(pi, s)

d(pt, o) d(pi, o)

d(pt, pi)

100 101 102 103

101

102

103

∥mt∥2
∥mi∥2

10−3 10−2 10−1 100 101 102 103

∥mi∥2/∥mt∥2

0 200 400 600 800 1,000

∥mi −mt∥2

0 45 90 135 180

∠mimt

Figure 5.46: Fast Levenberg-Marquardt, expected computation time in ms

79

Chapter 6

Comparison with related
work

In this thesis, we laid the groundwork for a localization sys-
tem based on AMR sensors and permanent magnet mark-
ers. In this chapter, we will compare our system to the ones
that we covered in Chapter 2 in terms of cost, size, weight,
flexibility, applicability, sensing range, robustness and per-
formance, among other things.

The approaches that rely on graphical algorithms [Liang We achieve higher
sensing ranges,
more flexibility in
sensor placement
and lower costs than
approaches based
on graphical
algorithms.

et al., 2012, 2013, 2015, Steurer and Srivastava, 2003, Hook
et al., 2009] are restricted to Cartesian grids and require
a large number of sensors, making them prohibitively ex-
pensive. They are inherently good at multi-object track-
ing and identification, due to the high resolution, but have
low sensing distances. We came up with a modular sensor
design, that allows the composition of sparse sensor net-
works with almost arbitrary topologies, making our system
cheaper and more flexible. The sensors can be of higher
quality, without impacting the cost as much. This leads to
increased sensing distances when combined with a local-
ization algorithm that is based on solving the B-field equa-
tions. Multi-object tracking should be possible with our
approach as well, but was not tested. The magnetization
strength, that is estimated implicitly during the localization
as the magnitude of the dipole moment m, might be usable
for the identification of objects that are marked with a sin-
gle magnet. However, whether this is feasible or thwarted
by the distortion of the B-field of real magnets compared to
ideal dipoles remains to be tested as well.

80 6 Comparison with related work

Fernandez et al. [2020] use active markers that contain theBy using passive,
permanent magnet
based markers, we

can offer more
flexibility than

approaches with
active or externally

excited alternatives,
but the markers

attract or repeal each
other.

sensors for a wearable tracking system. Having to connect
the markers with cables is not too much of a limitation for
wearable systems, but limits the practicality for most other
applications, which is why we and most related works fa-
vor passive markers. Using the sensors as markers also re-
quires an external field source, in this case an excitation coil
similar to the one that Hashi et al. [2011] use. The excita-
tion coils typically need to be large, heavy and require a
lot of energy, and thus mostly limit the systems that rely
on them to static environments with sufficient space, a suit-
able power source, and no ferromagnetic or sensitive ob-
jects in the vicinity. As a consequence, most other works, as
well as ours, use permanent magnets that are lightweight,
small in size and need no external power source. On the
other hand, the LC oscillator based markers used by Hashi
et al. [2011] and the sensor based markers used by Fernan-
dez et al. [2020] do have the advantage that they do not
attract or repel each other.

All of the other approaches, that use more than two sen-The combination of
sensors with

integrated sampling
circuitry and I3C

allows us to take all
measurements
simultaneously.

sors, require multiplexers to take measurements sequen-
tially [Schlageter et al., 2001, Hu et al., 2006, 2010, Hook
et al., 2009, Liang et al., 2012, 2013, 2015, Steurer and Sri-
vastava, 2003, Hashi et al., 2011]. This creates delay be-
tween the measurements, which leads to errors in the data
when the markers are moving. Our system uses the I3C
bus, which can be used to control over 100 sensors and of-
fers broadcast commands that can be used to precisely syn-
chronize all measurements. Since the sampling circuitry is
integrated in our sensors, all measurements can be taken
and sampled simultaneously.

Liang et al. [2013] use WSH138 Hall sensors, Hu et al. [2006]There is not enough
data for a meaningful

comparison of the
sensors and the

corresponding signal
processing chain.

use HMC1053 AMR sensors and we use MMC5633 AMR
sensors in our design. Some of the specifications are listed
in Table 6.1. As is typical for the corresponding technolo-
gies, the Hall sensor has the highest measurement range
at around ±200G. As the WSH138 datasheet is very brief,
this unfortunately is where our comparison with the Hall
sensor ends. Compared to the HMC1053, the measure-
ment range of our sensor is five times higher, which means
that magnets can get closer to the sensors without overdriv-
ing them. The repeatability errors are the same, consider-
ing that the full scale range of the MMC5633 is five times
higher than the one of the HMC1053. The linearity error
of the MMC5633 is about 40% higher than the one of the
HMC1053, but these values are only comparable to a lim-
ited extend, as they have been determined over different

81

field ranges. We also lack the data to compare the arguably
most important metric, the signal-to-noise ratio.

Part number Meas. range Linearity error Repeatability error
WSH138 ±200G n.A. n.A.
HMC1053 ±6G 1.8%FS 0.10%FS
MMC5633 ±30G 0.5%FS 0.02%FS

Table 6.1: B-field sensor specifications

Something, that is not mentioned in any related works, The common
iterative approaches
are not reliable
enough to be used
for localization on
their own.

is that the localization can fail for some initial guesses.
Hashi et al. [2009] use Gauss-Newton to solve the non-
linear equation system, but only examine the accuracy of
the results. We found that the original formulation of
Gauss-Newton only convergences for around 30% of the
initial guesses, or for about 84% of the initial values that
are within 5mm of the true result. In fact, we examined
the effects of the initial values on all the commonly used
methods for solving the dipole equations in great detail and
deem none of them robust enough for practical use on their
own.

By implementing most of the code ourselves, we had the We found that
implementation
details have a large
impact on the overall
performance.

opportunity to optimize the performance and handle some
special cases. Hu et al. [2005] used the trust region im-
plementation of Levenberg-Marquardt provided by Mat-
lab, which uses direct methods to determine λ. We imple-
mented and tested this variant as well and found it to be
comparatively unsuitable for this particular task, as the op-
timal λ tends to vary a lot between steps, frequently caus-
ing Levenberg-Marquardt to repeat the same optimization
steps until a suitable λ is found.

Only few of the related works published benchmarks for Our system is
extremely fast.their localization algorithm. For most of the works, we

could find localization rates for the whole systems (see Ta-
ble 2.1), but oftentimes it is not stated where exactly the bot-
tleneck is. As a whole, we expect our system to be able to
refresh the localization 1000 times per second, which is 10
times faster than the fastest related system that we found.
Hu et al. [2005] found in ideal simulations with five 1D sen-
sors that a localization with Levenberg-Marquardt can be
performed in about 100ms. On average, our simulations
with comparable initial guesses finished in only 62µs. It has
to be noted though that our simulations were performed on
faster hardware and assume four 3D sensors, which might
or might not increase the convergence rate. In 2019, Lu et al.
implemented the improved algorithm of Hu et al. [2008],
that consists of a linear algorithm, whose result is used

82 6 Comparison with related work

as initial guess for Levenberg-Marquardt. Like Hu et al.,
Lu et al. use the Matlab implementation of Levenberg-
Marquardt, and publish benchmarks based on a real system
with 24 3D B-field sensors and a permanent magnet that is
moved along a space-filling curve by a robot arm. Accord-
ing to their results, with calculations performed on mod-
ern hardware, a localization with a combination of the lin-
ear algorithm and Levenberg-Marquardt still takes 62ms,
which would mean that our algorithm converges around
1000 times faster, when it does. They propose a faster al-
ternative, based on a singular value truncated supervised
descent method, which offers results of similar quality, but
only needs 38ms on average per localization. This is still
much slower than our proposed method.

83

Chapter 7

Conclusion

7.1 Summary

In this work, we designed and evaluated hardware and
software as the basis for a permanent tracking system that
is optimized for HCI applications such as gesture detection.

The hardware consists of a controller and a sensor net- The hardware is
compact, lightweight,
energy efficient,
affordable, fast and
the sensors have a
high sensitivity and
resolution.

work, that can be arranged in terms of size and sensor
number as needed, to fit the requirements of the applica-
tion. At 19mm×19mm×6.7mm, the sensor modules are
rather small in size, so that they are even mountable in
places where space is at a premium. Each sensor only needs
4mA of supply current for 100 measurements per second,
or down to 1mA when noise in the measurements is of
little concern, so it easy to supply the system with power
via a standard USB 2.0 connection or a battery, even for
large sensor networks. The maximum number of sensors is
only limited by the 7-bit address space and the baud rates
of I3C. This means that networks with around 100 sensors
should be possible, as long as the measurement rate is cho-
sen accordingly. In addition, the sensors can measure field
strengths of up to 30G with a resolution of up to 20 bits
and, RMS noise levels of under 2.5mG at sampling rates
of 75Hz. If high sampling rates are more important than
low noise, the latter can be increased up to 1kHz. The con-
troller is very versatile and might be fast enough to per-
form the localizations itself. While our evaluation board
turned out to be pretty large, it should be possible to de-
sign a non-prototype controller PCB for the 100-pin version
of the LPC5536 and its integrated USB peripheral, that is

84 7 Conclusion

almost the size of just the controller, with all other parts on
the bottom side.

For the localization, we assume the B-fields of permanentA localization based
on a minimization
problem using the
dipole equations,

solved with
Gauss-Newton and a
line search based on

Grid Search and
Golden Section

Search is very fast.

magnets to be sufficiently similar to that of ideal dipoles,
so that we can use the corresponding equations to set up a
quadratic loss function. We have attempted to solve the re-
sulting non-linear optimization problem with three differ-
ent iterative approaches: Gradient Descent, Gauss-Newton
and Levenberg-Marquardt. The latter two require invert-
ing a matrix, which is usually avoided by rearranging and
solving the equation system with a matrix decomposition.

We tested three common methods and compared their per-
formance: the Cholesky decomposition, the QR decompo-
sition and the singular value decomposition. In addition,
we have combined the methods with a line search to reduce
their sensitivity to the starting conditions and to increase
the convergence rates. The direction for the line search is
generated by the general approach and normalized to be
of the same magnitude as the current values. The scale is
then determined by a combination of three methods: Grid
Search, Golden Section Search and Newton-Raphson.

We ran several simulations for each combination of meth-
ods to determine the parameters for the line search that op-
timize either the robustness to the initial conditions or the
expected time until the localization is successful when the
possibility of repeated attempts after failures is taken into
account. We found Gradient Descent to be unsuited for
the localization problem under all conditions. Levenberg-
Marquardt is applicable, robust to poor choices of initial
values and sufficiently fast when used in its original form
as a trust-region method, but the choice of the optimal λ pa-
rameter is difficult and varies a lot between steps, making
direct methods of controlling λ a poor choice. Combining
a Levenberg-Marquardt that always chooses the optimal λ
with a line search lead to no improvements in expected ex-
ecution time, and only little improvements in robustness
to starting conditions. Gauss-Newton in its original form
is rather fast, but very sensitive to the initial values. By
combining it with a line search, we found that it almost
matches the robustness of the ideal Levenberg-Marquardt,
while needing more than 40% fewer steps to converge on
average.

For starting conditions in the general vicinity of the sen-
sor grid, the expected time until a successful localization
is performed is just 212µs. For initial positions, that are

7.2 Limitations and future work 85

within 3cm of the actual position, the algorithm is even
faster, needing only less than 100µs for a localization. This
is relevant, because it can be expected to almost always be
the case after the first localization in tracking applications.

7.2 Limitations and future work

To obtain a reliable system, a meta algorithm is needed in A meta algorithm that
uses Gauss-Newton
must be chosen to
ensure the success
of localizations.

addition to our improved Gauss-Newton, which chooses
the initial values and potentially restarts the localization
with different parameters after failures. This might be a
simple random restart scheme, something more complex
that takes velocities and accelerations into account like the
Unscented Kalman filter, or perhaps something as versatile
as a particle filter.

All our simulations have been performed without added More realistic
simulations and tests
with the real system
are needed.

noise, errors, offsets or quantization, and we used ideal
dipoles instead of approximating the fields of permanent
magnets more closely, so it is unclear whether the results
are still valid under real conditions. In addition, we only
performed simulations with four sensors in one particular
configuration. Other placements and the addition of more
sensors is likely to affect our results in various ways and
should be looked into. On the same note, real-world tests
on the actual hardware are pending as well.

The line search can potentially be improved slightly by em-
ploying other (especially direct) methods. A 2D search
with different scaling parameters for p and m might also
be promising, considering that p and m often differ by two
or three orders of magnitude.

It might be possible to speed up the localization by using
a higher order Taylor approximation of the residuals. As
this requires calculating a tensor with many values in each
step, this does however seem unlikely. A definitely needed The earth’s magnetic

field needs to be
added to the
minimization
problem.

addition for real applications is the inclusion of the earth’s
magnetic field in the equation system. While it is possible
to make an initial measurement for calibration and to sub-
tract the measured fields as offsets, estimating the earth’s
magnetic field in every step makes the system more robust
to orientation changes of the whole sensor grid. In addi-
tion, the measurement of the earth’s magnetic field enables
the estimation of the sensor orientation deviations, which
are already significant due to the small size of the sensor,

86 7 Conclusion

even if the modules as a whole were to be orientated per-
fectly.

Multi-object tracking and identification should be possibleThe number of
markers must be

known in advance for
multi object tracking.

with our approach by adding additional pairs of p and m to
the equation system. For this, the number of markers must,
however, be known in advance.

87

Appendix A

Examples of Lline(h)

In the following, we present some examples of Lline(h) that
we found during our simulations. Lline(h) is plotted in yel-
low, dLline(h)

dh in red and d2Lline(h)
dh2 in blue.

100 102 104 106 108 1010 1012 1014 1016 1018 1020
10−7

10−6

100 102 104 106 108 1010 1012 1014 1016 1018 1020

−1

−0.5

0

·10−5

Figure A.1: Example of Lline(h), no minimum

103 104

10−5.6

10−5.4

103 104

0

5

·10−5

Figure A.2: Example of Lline(h), one minimum

88 A Examples of Lline(h)

104 105 106
10−8

10−7

10−6

10−5

104 105 106

−1

−0.5

0

0.5

·10−3

Figure A.3: Example of Lline(h), two minima

107 108

10−8

10−7

107 108

−5

0

5
·10−5

Figure A.4: Example of Lline(h), three minima

103 104 105

10−7

10−6

10−5

10−4

103 104 105

−2

0

2

·10−3

Figure A.5: Example of Lline(h), four minima

104 105 106 107 108 109
10−7

10−6.5

104 105 106 107 108 109

−4

−2

0

2

·10−5

Figure A.6: Example of Lline(h), five minima

89

Bibliography

Neculai Andrei. Modern Numerical Nonlinear Opti-
mization. Springer International Publishing, Cham,
2022. ISBN 978-3-031-08720-2. doi: 10.1007/
978-3-031-08720-2. URL https://doi.org/10.
1007/978-3-031-08720-2.

H. Blanchard, L. Chiesi, R. Racz, and R.S. Popovic. Cylin-
drical hall device. In International Electron Devices Meet-
ing. Technical Digest, pages 541–544, 1996. doi: 10.
1109/IEDM.1996.554041. URL https://doi.org/10.
1109/IEDM.1996.554041.

Universal Serial Bus Specification. Compaq, Hewlett-
Packard, Intel, Lucent, Microsoft, NEC and Philips, 4
2000. Revision 2.0.

Yadolah Dodge. The Concise Encyclopedia of Statis-
tics. Springer New York, New York, NY,
2008. ISBN 978-0-387-32833-1. doi: 10.1007/
978-0-387-32833-1. URL https://doi.org/10.
1007/978-0-387-32833-1.

Laura Drescher-Manaa. Designing a magnetic field sensor
grid for 2d mid-air gesture recognition. Bachelor’s thesis,
RWTH Aachen University, Aachen, September 2022.

David Fernandez, Paolo Motto Ros, Danilo Demarchi, and
Marco Crepaldi. A low-complexity 6dof magnetic track-
ing system based on pre-computed data sets for wearable
applications. IEEE Transactions on Circuits and Systems I:
Regular Papers, PP:1–14, 06 2020. doi: 10.1109/TCSI.2020.
2998221. URL https://doi.org/10.1109/TCSI.
2020.2998221.

Xinying Han, Hiroaki Seki, Yoshitsugu Kamiya, and
Masatoshi Hikizu. Wearable handwriting input de-
vice using magnetic field: Geomagnetism cancellation
in position calculation. Precision Engineering, 33(1):37–
43, 2009. ISSN 0141-6359. doi: 10.1016/j.precisioneng.
2008.03.008. URL https://doi.org/10.1016/j.
precisioneng.2008.03.008.

https://doi.org/10.1007/978-3-031-08720-2
https://doi.org/10.1007/978-3-031-08720-2
https://doi.org/10.1109/IEDM.1996.554041
https://doi.org/10.1109/IEDM.1996.554041
https://doi.org/10.1007/978-0-387-32833-1
https://doi.org/10.1007/978-0-387-32833-1
https://doi.org/10.1109/TCSI.2020.2998221
https://doi.org/10.1109/TCSI.2020.2998221
https://doi.org/10.1016/j.precisioneng.2008.03.008
https://doi.org/10.1016/j.precisioneng.2008.03.008

90 Bibliography

S. Hashi, S. Yabukami, H. Kanetaka, K. Ishiyama, and
K. I. Arai. Numerical study on the improvement of
detection accuracy for a wireless motion capture sys-
tem. IEEE Transactions on Magnetics, 45(6):2736–2739,
2009. doi: 10.1109/TMAG.2009.2020541. URL https:
//doi.org/10.1109/TMAG.2009.2020541.

S. Hashi, S. Yabukami, H. Kanetaka, K. Ishiyama, and K. I.
Arai. Wireless magnetic position-sensing system using
optimized pickup coils for higher accuracy. IEEE Trans-
actions on Magnetics, 47(10):3542–3545, 2011. doi: 10.
1109/TMAG.2011.2154313. URL https://doi.org/
10.1109/TMAG.2011.2154313.

Jonathan Hook, Stuart Taylor, Alex Butler, Nicolas Villar,
and Shahram Izadi. A reconfigurable ferromagnetic in-
put device. In Proceedings of the 22nd Annual ACM Sym-
posium on User Interface Software and Technology, UIST ’09,
page 51–54, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605587455. doi: 10.
1145/1622176.1622186. URL https://doi.org/10.
1145/1622176.1622186.

Chao Hu, Max Qinghu Meng, and M. Mandal. Efficient
magnetic localization and orientation technique for cap-
sule endoscopy. In 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 628–633, 2005. doi:
10.1109/IROS.2005.1545490. URL https://doi.org/
10.1109/IROS.2005.1545490.

Chao Hu, M.Q.-H. Meng, M. Mandal, and Xiaona Wang.
3-axis magnetic sensor array system for tracking mag-
net’s position and orientation. In 2006 6th World
Congress on Intelligent Control and Automation, volume 2,
pages 5304–5308, 2006. doi: 10.1109/WCICA.2006.
1714082. URL https://doi.org/10.1109/WCICA.
2006.1714082.

Chao Hu, Max Q.-H. Meng, and Mrinal Mandal. A lin-
ear algorithm for tracing magnet position and orienta-
tion by using three-axis magnetic sensors. IEEE Trans-
actions on Magnetics, 43(12):4096–4101, 2007. doi: 10.
1109/TMAG.2007.907581. URL https://doi.org/
10.1109/TMAG.2007.907581.

Chao Hu, Wanan Yang, Dongmei Chen, Max Q.-H. Meng,
and Houde Dai. An improved magnetic localization and
orientation algorithm for wireless capsule endoscope. In
2008 30th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, pages 2055–2058,
2008. doi: 10.1109/IEMBS.2008.4649596. URL https:
//doi.org/10.1109/IEMBS.2008.4649596.

https://doi.org/10.1109/TMAG.2009.2020541
https://doi.org/10.1109/TMAG.2009.2020541
https://doi.org/10.1109/TMAG.2011.2154313
https://doi.org/10.1109/TMAG.2011.2154313
https://doi.org/10.1145/1622176.1622186
https://doi.org/10.1145/1622176.1622186
https://doi.org/10.1109/IROS.2005.1545490
https://doi.org/10.1109/IROS.2005.1545490
https://doi.org/10.1109/WCICA.2006.1714082
https://doi.org/10.1109/WCICA.2006.1714082
https://doi.org/10.1109/TMAG.2007.907581
https://doi.org/10.1109/TMAG.2007.907581
https://doi.org/10.1109/IEMBS.2008.4649596
https://doi.org/10.1109/IEMBS.2008.4649596

Bibliography 91

Chao Hu, Mao Li, Shuang Song, Wan’an Yang, Rui Zhang,
and Max Q. H. Meng. A cubic 3-axis magnetic sensor
array for wirelessly tracking magnet position and orien-
tation. IEEE Sensors Journal, 10(5):903–913, 2010. doi:
10.1109/JSEN.2009.2035711. URL https://doi.org/
10.1109/JSEN.2009.2035711.

Rong-Hao Liang, Kai-Yin Cheng, Chao-Huai Su, Chien-
Ting Weng, Bing-Yu Chen, and De-Nian Yang.
Gausssense: Attachable stylus sensing using mag-
netic sensor grid. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Tech-
nology, UIST ’12, page 319–326, New York, NY, USA,
2012. Association for Computing Machinery. ISBN
9781450315807. doi: 10.1145/2380116.2380157. URL
https://doi.org/10.1145/2380116.2380157.

Rong-Hao Liang, Kai-Yin Cheng, Liwei Chan, Chuan-
Xhyuan Peng, Mike Y. Chen, Rung-Huei Liang, De-Nian
Yang, and Bing-Yu Chen. Gaussbits: Magnetic tangi-
ble bits for portable and occlusion-free near-surface in-
teractions. In CHI ’13 Extended Abstracts on Human Fac-
tors in Computing Systems, CHI EA ’13, page 2837–2838,
New York, NY, USA, 2013. Association for Comput-
ing Machinery. ISBN 9781450319522. doi: 10.1145/
2468356.2479537. URL https://doi.org/10.1145/
2468356.2479537.

Rong-Hao Liang, Han-Chih Kuo, and Bing-Yu Chen.
Gaussstarter: Prototyping analog hall-sensor grids with
breadboards. In Adjunct Proceedings of the 28th An-
nual ACM Symposium on User Interface Software & Tech-
nology, UIST ’15 Adjunct, page 49–50, New York, NY,
USA, 2015. Association for Computing Machinery. ISBN
9781450337809. doi: 10.1145/2815585.2835511. URL
https://doi.org/10.1145/2815585.2835511.

Jun Lu, Manxi Xiao, Caibao Zhang, and Zhaoshui He. Ro-
bust and fast magnetic dipole localization with singu-
lar value truncated sdm. IEEE Access, 7:94300–94309,
2019. doi: 10.1109/ACCESS.2019.2928036. URL https:
//doi.org/10.1109/ACCESS.2019.2928036.

J. McFee and Y. Das. Determination of the parameters of
a dipole by measurement of its magnetic field. IEEE
Transactions on Antennas and Propagation, 29(2):282–287,
1981. doi: 10.1109/TAP.1981.1142569. URL https:
//doi.org/10.1109/TAP.1981.1142569.

MIPI. MIPI I3C Basic Specification. Mobile Industry Proces-
sor Interface Alliance, 6 2021. Specification Version 1.1.1.

https://doi.org/10.1109/JSEN.2009.2035711
https://doi.org/10.1109/JSEN.2009.2035711
https://doi.org/10.1145/2380116.2380157
https://doi.org/10.1145/2468356.2479537
https://doi.org/10.1145/2468356.2479537
https://doi.org/10.1145/2815585.2835511
https://doi.org/10.1109/ACCESS.2019.2928036
https://doi.org/10.1109/ACCESS.2019.2928036
https://doi.org/10.1109/TAP.1981.1142569
https://doi.org/10.1109/TAP.1981.1142569

92 Bibliography

NIST. CODATA RECOMMENDED VALUES OF THE
FUNDAMENTAL PHYSICAL CONSTANTS. National
Institute of Standards and Technology, 2018. URL
https://www.physics.nist.gov/cuu/pdf/
wall_2018.pdf.

Pedro Pinies, Juan D. Tardos, and Jose Neira. Localiza-
tion of avalanche victims using robocentric slam. In
2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3074–3079, 2006. doi: 10.1109/
IROS.2006.282247. URL https://doi.org/10.1109/
IROS.2006.282247.

G Sandhya Rani, Sarada Jayan, and K V Nagaraja. An ex-
tension of golden section algorithm for n-variable func-
tions with matlab code. IOP Conference Series: Materi-
als Science and Engineering, 577(1):012175, nov 2019. doi:
10.1088/1757-899X/577/1/012175. URL https://dx.
doi.org/10.1088/1757-899X/577/1/012175.

Vincent Schlageter, PA Besse, Radivoje Popovic, and
P. Kucera. Tracking system with five degrees of free-
dom using a 2d-array of hall sensors and a permanent
magnet. Sensors and Actuators A: Physical, 92:37–42, 08
2001. doi: 10.1016/S0924-4247(01)00537-4. URL https:
//doi.org/10.1016/S0924-4247(01)00537-4.

P. Steurer and M.B. Srivastava. System design of smart
table. In Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communications, 2003.
(PerCom 2003)., pages 473–480, 2003. doi: 10.1109/
PERCOM.2003.1192772. URL https://doi.org/10.
1109/PERCOM.2003.1192772.

Mark K. Transtrum and James P. Sethna. Improvements to
the levenberg-marquardt algorithm for nonlinear least-
squares minimization. arXiv: Data Analysis, Statistics and
Probability, 2012. doi: 10.48550/arXiv.1201.5885. URL
https://doi.org/10.48550/arXiv.1201.5885.

https://www.physics.nist.gov/cuu/pdf/wall_2018.pdf
https://www.physics.nist.gov/cuu/pdf/wall_2018.pdf
https://doi.org/10.1109/IROS.2006.282247
https://doi.org/10.1109/IROS.2006.282247
https://dx.doi.org/10.1088/1757-899X/577/1/012175
https://dx.doi.org/10.1088/1757-899X/577/1/012175
https://doi.org/10.1016/S0924-4247(01)00537-4
https://doi.org/10.1016/S0924-4247(01)00537-4
https://doi.org/10.1109/PERCOM.2003.1192772
https://doi.org/10.1109/PERCOM.2003.1192772
https://doi.org/10.48550/arXiv.1201.5885

Typeset November 20, 2023

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	GaussSense, GaussBits and GaussStarter liang:2012, liang:2013, liang:2015
	System Design of Smart Table steurer:2003
	A Reconfigurable Ferromagnetic Input Device hook:2009
	Wireless Magnetic Position-Sensing System Using Optimized Pickup Coils for Higher Accuracy hashi:2009, hashi:2011
	Tracking System with Five Degrees of Freedom Using a 2D-Array of Hall Sensors and a Permanent Magnet schlageter:2001
	3-Axis Magnetic Sensor Array System for Tracking Magnet’s Position and Orientation hu:2005, hu:2006, hu:2007, hu:2008, hu:2010
	Our work

	Hardware
	Issues and benefits of I3C
	Sensor
	Controller

	Localization algorithm
	Problem formulation
	Determining the step size h
	Grid Search
	Golden Section Search
	Newton-Raphson

	Determining the step direction
	Gradient Descent
	Gauss-Newton
	Solution using Cholesky decomposition
	Solution using QR decomposition
	Solution using singular value decomposition

	Levenberg-Marquardt
	Solution using Cholesky decomposition
	Solution using QR decomposition
	Solution using singular value decomposition
	Choice of D

	Convergence, stop and abort criteria

	Evaluation
	Simulations
	Hardware
	Convergence, stop and abort criteria
	Algorithm
	Simulated system

	Optimal h search interval
	Sensitivity to the h search interval
	Parameter tuning
	Results

	Sensitivity to initial values
	Successful methods
	Fast methods

	Comparison with related work
	Conclusion
	Summary
	Limitations and future work

	Examples of Lline(h)
	Bibliography

